A=1+2^2+2^4+.......+2^2014
So sánh A với 2016
A = (1 - 1/(2*2)) * (1 - 1/(3*3)) * (1 - 1/(4*4)) ….* (1 - 1/(2016*2016)) .So sánh A với 1/2
so sánh A với 1/2 biết A = ( 1-1/2*2)* (1-1/3*3) * ( 1-1/4*4)* ...* ( 1-1/2016*2016)
A=\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.....\frac{2016^2-1}{2016^2}\)
A=\(\frac{\left(2+1\right)\left(2-1\right)}{2^2}.\frac{\left(3+1\right)\left(3-1\right)}{3^2}......\frac{\left(2016+1\right)\left(2016-1\right)}{2016^2}\)
A=\(\frac{3.4......2017}{2.3....2016}.\frac{1.2...2015}{2.3...2016}\)
A=\(\frac{2017}{2}.\frac{1}{2016}\)
A=\(\frac{2017}{2.2106}>\frac{1}{2}\)
Vậy A\(>\frac{1}{2}\)
So sánh A với 1
A=1/1^2*2^2+5/2^2*3^2+7/3^2*4^2+...........+19/2015^2*2016*2
A<1
bn tick mk nha cho mk thoat am ngay de con an mung
so sánh A với 1/2 : A = 1/2! + 2/3! + 3/4! +...+ 2016/2017!
cho A=1*2*3+1/2*3*4+1/3*4*5+...+1/2014*2015*2016.so sánh A với 1/4
A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
A=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)
A=\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2015.2016}\right)\)
A=\(\frac{1}{4}-\frac{1}{2015.2016.2}\)\(\Rightarrow A<\frac{1}{4}\)
cho A= 1/2 . 3/4. 5/6 .....2015/2016. hãy so sánh A2 với B = 1/2017
so sánh A=1/2-1/22+1/23-1/24+.......+1/22015-1/22016 với 1/3
So sánh A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2016}}\)với 1
Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
\(\Rightarrow2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2016}}\right)\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{2016}}\)
\(\Rightarrow A<1\left(đpcm\right)\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2016}}\)
=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2015}}\)
=>\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2016}}\right)\)
=>\(A=1-\frac{1}{2^{2016}}\)
Vậy \(A=1-\frac{1}{2^{2016}}\)
so sánh A= 1/1 x 2 x 3 + 1/2 x 3 x 4 + 1/3 x 4 x 5 + ...+ 1/ 2014 x 2015 x 2016 với 1/4
2A=2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ...+2/2014.2015.2016
Ta có: 2/1.2.3=1/1.2-1/2.3; 2/2.3.4=1/2.3-1/3.4; 2/3.4.5=1/3.4-1/4.5; ....; 2/2014.2015.2016=1/2014.2015-1/2015.2016
=> 2A=1/1.2-1/2015.2016
=> 2A < 1/2 => A < 1/4