Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tạ Nam Khánh
Xem chi tiết
Nguyễn Thị Mai Anh
Xem chi tiết
kaitovskudo
18 tháng 8 2016 lúc 20:42

A=\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.....\frac{2016^2-1}{2016^2}\)

A=\(\frac{\left(2+1\right)\left(2-1\right)}{2^2}.\frac{\left(3+1\right)\left(3-1\right)}{3^2}......\frac{\left(2016+1\right)\left(2016-1\right)}{2016^2}\)

A=\(\frac{3.4......2017}{2.3....2016}.\frac{1.2...2015}{2.3...2016}\)

A=\(\frac{2017}{2}.\frac{1}{2016}\)

A=\(\frac{2017}{2.2106}>\frac{1}{2}\)

Vậy A\(>\frac{1}{2}\)

Shinichi_kun
Xem chi tiết
Do Kyung Soo
16 tháng 1 2016 lúc 22:21

A<1

bn tick mk nha cho mk thoat am ngay de con an mung

Shinichi_kun
16 tháng 1 2016 lúc 22:22

các bạn giải chi tiết hộ mik

Linh
16 tháng 1 2016 lúc 22:42

A < 1

phạm trần minh anh
Xem chi tiết
tạ quang vũ
Xem chi tiết
Như LuPin
10 tháng 5 2016 lúc 9:34

A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)

A=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)

A=\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2015.2016}\right)\)

A=\(\frac{1}{4}-\frac{1}{2015.2016.2}\)\(\Rightarrow A<\frac{1}{4}\)

Tinh Phuong
Xem chi tiết
tvt
Xem chi tiết
Đặng Việt Hưng
Xem chi tiết
Trà My
11 tháng 5 2016 lúc 15:35

Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)

\(\Rightarrow2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2016}}\right)\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

\(\Rightarrow A=1-\frac{1}{2^{2016}}\)

\(\Rightarrow A<1\left(đpcm\right)\)

Hoàng Phúc
11 tháng 5 2016 lúc 15:31

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2016}}\)

=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2015}}\)

=>\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2016}}\right)\)

=>\(A=1-\frac{1}{2^{2016}}\)

Vậy \(A=1-\frac{1}{2^{2016}}\)

Hồ Quỳnh Nga
11 tháng 5 2016 lúc 15:31

khó nhỉ ?

An Lê
Xem chi tiết
Bùi Thế Hào
9 tháng 5 2017 lúc 12:57

2A=2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ...+2/2014.2015.2016

Ta có: 2/1.2.3=1/1.2-1/2.3; 2/2.3.4=1/2.3-1/3.4; 2/3.4.5=1/3.4-1/4.5; ....; 2/2014.2015.2016=1/2014.2015-1/2015.2016

=> 2A=1/1.2-1/2015.2016

=> 2A < 1/2 => A < 1/4

nguyễn minh tú
31 tháng 8 2017 lúc 12:12

nbvbvvvxcvcgf