Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Thuỳ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2023 lúc 23:00

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD*CB=CA*CE

 

Lê Phi Hào
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 3 2023 lúc 14:16

a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔAEB và ΔIEC có

góc BAE=góc EIC

góc AEB=góc IEC

=>góc ABE=góc ICE=góc IBC

=>ΔIEC đồng dạng với ΔICB

=>IE/IC=IC/IB

=>IC^2=IE*IB

c: Xét ΔBNC có 

BI vừa là phân giác, vừa là đường cao

=>ΔBNC cân tại B

=>I là trung điểm của NC

ΔNAC vuông tại A

mà I là trung điểm của NC

nên IA=IN=IC

=>IN^2=IE*IB

và IA=IM

nên IM^2=IE*IB

=>IM/IE=IB/IM

=>ΔIMB đồng dạng với ΔIEM

=>góc IMB=90 độ

=>ĐPCM

Huong Nguyen Thi
Xem chi tiết
Sky Lawson
Xem chi tiết
Nguyễn Phú Cường
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 4 2023 lúc 17:45

a: Xét ΔHBA vuông tạiH và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: Xét ΔHAC vuông tại H và ΔHDB vuông tại H có

góc HAC=góc HDB

=>ΔHAC đồng dạng vơi ΔHDB

=>HA/HD=HC/HB

=>HA*HB=HD*HC

huy khổng
Xem chi tiết
Nguyễn Huệ Lam
24 tháng 6 2017 lúc 17:24

A B C H E D 3 4

a)

Xét \(\Delta ABC\) và \(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

b)

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\Delta ABC\)đồng dạng với \(\Delta HBA\)

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)

c) Ta có

\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)

Xét \(\Delta ABC\)và \(\Delta DEC\)

\(\widehat{BAC}=\widehat{CDE}=90^o\)

\(\widehat{ACB}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)

\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)

d)

\(\Delta AHB\)vuông tại H

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)

Ta có;   \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)

Ta lại có: 

\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)

\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)

Ta lại có:

\(AE=AC-EC=4-1=3\left(cm\right)\)

mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A

Vậy \(\Delta ABE\)cân tại A

Nguyễn Huệ Lam
24 tháng 6 2017 lúc 17:25

Hình vẽ ko được chính xác bạn thông cảm

Nguyễn Thị Ngọc Lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2022 lúc 10:15

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó:ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\)

c: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

Do đó; BD=60/7(cm); CD=80/7(cm)

Đinh MAi ANh
Xem chi tiết
Lục Bảo Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 4 2023 lúc 7:27

loading...