chứng tỏ:
111.....1 (n chữ số 1) -n chia hết cho 9 với mọi n thuộc N
giúp mình với, mình cần gấp lắm
Chứng tỏ rằng vs mọi n thuộc N thì 8n + 111...1 ( n chữ số ) chia hết cho 9
GIÚP MIK NHA , AI NHANH MIK KB VÀ KÍCH , CẢM ƠN TRƯỚC , MIK CẦN GẤP LẮM , GIẢI CÓ LỜI GIAIRA CHO MIK NHA
Chứng minh rằng :
a)với mọi n thuộc N thì A=8*n+11..11 chia hết cho 9 (11...111 có n chữ số 1 )
b)Với mọi a,b,n thuộc N thì B=(10n-1)*a+(11..111-n)*b chia hết cho 9 (111..111 có n chữ số 1)
c)888...88-9=n chia hết cho 9 (888..888 có n chữ số 8)
Cho A=n2+n+1. Chứng tỏ rằng A không chia hết cho 5 với mọi số tự nhien n
Giúp mình với nha. Mình cần cách làm gấp lắm. Ai đúng mình tick cho. Thanks trước :v
Chứng minh rằng n(3n^2 + 2022) chia hết cho 9 với mọi số nguyên n
giúp mình với ạ
A=3n(n^2+674)
TH1: n=3k
=>A=3*3k(n^2+674)=9k(n^2+674) chia hết cho 9
TH2: n=3k+1
=>A=3(3k+1)(9k^2+6k+1+674)
=3(3k+1)(9k^2+6k+675)
=9(3k+1)(3k^2+2k+225) chia hết cho 9
TH3: n=3k+2
=>A=3(3k+2)(9k^2+12k+4+674)
=3(3k+2)(9k^2+12k+678)
=9(3k+2)(3k^2+4k+226) chia hết cho 9
1.chứng min 2n^2 .(n+1)-2n (n^2 +n-3) chia hết cho 6 vs mọi số nguyên n
2.chứng minh n(3-2n)-(n-1) (1+4n)-1 chia hết cho 6 với mọi số nguyên n
giúp mk vs mk cần gấp TT
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
Chứng tỏ rằng với n thuộc N thì 10n + 18.n-1 chia hết cho 27
Mọi người nhanh lên giúp mk nha mk đang cần gấp lắm
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n
=9.(111....1(n chữ số 1)+2n)
xét --------------------------------=11...1-n+3n
dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n
=>11....1-n chia hết cho 3
=>11.....1-n+3 chia hết cho 3
=>10n+18n-1 chia hết cho 27
cho n thuộc N, chứng tỏ rằng n2 + n + 1 không chia hết cho 4
MÌNH CẦN GẤP LẮM. MONG CÁC BẠN GIÚP