Chứng tỏ 2n+6:n+1
Chứng tỏ công thức 02 + ... + n2 = n(n+1)(2n+1) : 6 (n \(\in\) N) đúng
Chứng tỏ n(n+1)(2n+1) chia hết cho 6
Ai tick cho mình 5 cái để tròn luôn kìa
chứng tỏ rằng ( 6^2n + 19^n - 2^n+1) chia hết cho 17
chứng tỏ rằng n(n+1)(2n+1)chia hết cho 6
Đặt A = n(n + 1)(2n + 1)
Ta thấy n(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2
=> A chia hết cho 2 (1)
Ta xét 3 trường hợp:
+ n chia 3 dư 1 => 2n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia 3 dư 2 => n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia hết cho 3 => A chia hết cho 3
Do đó A luôn chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 6 (Vì 2.3 = 6 và (2; 3) = 1)
Vậy...
Chứng tỏ rằng n(n + 1)( 2n+ 1) chia hết cho 6 với mọi số nguyên n
Ta co :
n(n+1)(2n+1)
= n(n+1)(n+2+n-1)
=n(n+1)(n+2)+(n-1)(n+1)n
3 số liên tiếp thì chia hết cho 2 ; chia hết cho 3
Vay tổng trên chia hết cho 6
**** nhe đặng kiều oanh
Ta co :
n(n+1)(2n+1)
= n(n+1)(n+2+n-1)
=n(n+1)(n+2)+(n-1)(n+1)n
3 số liên tiếp thì chia hết cho 2 ; chia hết cho 3
Vay tổng trên chia hết cho 6
Chứng tỏ với mọi số tự nhiên n ta đều có : n . ( n + 4 ) ( 2n + 1 ) chia hết cho 6
chứng tỏ rằng n thuộc M
a) n . (n+1) . (n + 5) : 3
b) n . (2n + 1) . (7n + 1) : 6
Cho n thuộc Z. Chứng tỏ các phân số sau là phân số tối giản:
a) n + 7 n + 6
b) 3 n + 2 n + 1
Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.
a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.
b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.
Chứng tỏ
\(P=n.\left(n+1\right).\left(2n+1\right)⋮6\left(n\in N\right)\)
Giải :
Theo bài ra ta có :
P= n(n+1)(2n+1)
P= n(n+1)(n+2+n-1)
P= n(n+1)(n+2)+(n-1)(n+1)n
Ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 \(\Rightarrow\) P chia hết cho 6 ( ĐPCM )
Ta có:
\(P=n\left(n+1\right)\left(2n+1\right)\)
\(P=n\left(n+1\right)\left(n+2+n-1\right)\)
\(P=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)\left(n+1\right).n\)
Từ đó, ta nói 3 số tự nhiên liên tiếp là 1 số chia hết cho 2
Chia hết cho 3 => P chia hết cho 6 (ĐPCM)
<3
Chứng tỏ A = ( 3n+1 + 3n+3 + 2n+2 + 2n+3) ⋮ 6
A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)
= 3ⁿ⁺¹.(1 + 3²) + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 3ⁿ⁺¹.5.2 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 2.(3ⁿ⁺¹.5 + 2ⁿ⁺¹ + 2ⁿ⁺²) ⋮ 2 (1)
A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)
= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².(1 + 2)
= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².3
= 3.(3ⁿ + 3ⁿ⁺² + 2ⁿ⁺²) ⋮ 3 (2)
Từ (1) và (2) ⇒ A ⋮ 2 và A ⋮ 3
⇒ A ⋮ 6
\(A=3^{n+1}+9.3^{n+1}+2^n.4+2^n.8\)
\(=3^{n+1}.10+4.2^n.3\)
\(=3^n.6.5+2^n.2.6⋮6\)
\(\Rightarrow A⋮6\left(đpcm\right)\)
A= (3^n) * 3 + (3^n)*(3^3)+(2^n)*(2^2)+(2^n)*(2^3)
A= (3^n)*(3+9)+(2^n)*(4+8)
A= 12*[(3^n)+(2^n)]
do 12 chia hết cho 6 nên A chia hết cho 6 ( đpcm)