Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Hoàng Anh
Xem chi tiết
Nguyễn  Thuỳ Trang
25 tháng 12 2015 lúc 20:09

Ai tick cho mình 5 cái để tròn luôn kìa

Tui cuồg Oppa Song Joong...
Xem chi tiết
Khánh Linh
Xem chi tiết
Nobita Kun
24 tháng 1 2016 lúc 13:24

Đặt A = n(n + 1)(2n + 1)

Ta thấy n(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2

=> A chia hết cho 2    (1)

Ta xét 3 trường hợp:

+ n chia 3 dư 1 => 2n + 1 chia hết cho 3 => A chia hết cho 3

+ n chia 3 dư 2 => n + 1 chia hết cho 3 => A chia hết cho 3

+ n chia hết cho 3 => A chia hết cho 3

Do đó A luôn chia hết cho 3   (2)

Từ (1) và (2) => A chia hết cho 6 (Vì 2.3 = 6 và (2; 3) = 1) 

Vậy...

Khánh Linh
24 tháng 1 2016 lúc 13:46

thank you mấy bạn nha, các bạn giỏi quá!

đặng kiều oanh
Xem chi tiết
thien ty tfboys
1 tháng 12 2015 lúc 20:33

Ta co :

 n(n+1)(2n+1)

= n(n+1)(n+2+n-1)

=n(n+1)(n+2)+(n-1)(n+1)n  

3 số liên tiếp thì chia hết cho 2 ; chia hết cho 3

Vay  tổng trên chia hết cho 6

**** nhe   đặng kiều oanh

Trần Thị Linh Đan
1 tháng 12 2015 lúc 20:36

Ta co :

 n(n+1)(2n+1)

= n(n+1)(n+2+n-1)

=n(n+1)(n+2)+(n-1)(n+1)n

3 số liên tiếp thì chia hết cho 2 ; chia hết cho 3

Vay  tổng trên chia hết cho 6

Thanh Hương Phạm
Xem chi tiết
tina tina
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2017 lúc 6:12

Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.

a) Gọi d là ước chung của n + 7n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.

b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.

Hoàng Thị Thanh Huyền
Xem chi tiết
Ngo Tung Lam
9 tháng 11 2017 lúc 11:15

         Giải : 

Theo bài ra ta có : 

P= n(n+1)(2n+1)

P= n(n+1)(n+2+n-1)

P= n(n+1)(n+2)+(n-1)(n+1)n 
Ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 \(\Rightarrow\) P chia hết cho 6 ( ĐPCM )

Trần Văn Thành
9 tháng 11 2017 lúc 11:29

Ta có:

\(P=n\left(n+1\right)\left(2n+1\right)\)

\(P=n\left(n+1\right)\left(n+2+n-1\right)\)

\(P=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)\left(n+1\right).n\)

Từ đó, ta nói 3 số tự nhiên liên tiếp là 1 số chia hết cho 2

Chia hết cho 3 => P chia hết cho 6 (ĐPCM)

<3

Ngọc Thoa
Xem chi tiết
Kiều Vũ Linh
13 tháng 10 2023 lúc 21:17

A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)

= 3ⁿ⁺¹.(1 + 3²) + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 3ⁿ⁺¹.5.2 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 2.(3ⁿ⁺¹.5 + 2ⁿ⁺¹ + 2ⁿ⁺²) ⋮ 2   (1)

A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)

= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².(1 + 2)

= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².3

= 3.(3ⁿ + 3ⁿ⁺² + 2ⁿ⁺²) ⋮ 3   (2)

Từ (1) và (2) ⇒ A ⋮ 2 và A ⋮ 3

⇒ A ⋮ 6

Minh Hiếu
13 tháng 10 2023 lúc 21:12

\(A=3^{n+1}+9.3^{n+1}+2^n.4+2^n.8\)

\(=3^{n+1}.10+4.2^n.3\)

\(=3^n.6.5+2^n.2.6⋮6\)

\(\Rightarrow A⋮6\left(đpcm\right)\)

Viên Tiến Duy
13 tháng 10 2023 lúc 21:47

A= (3^n) * 3 + (3^n)*(3^3)+(2^n)*(2^2)+(2^n)*(2^3)

A= (3^n)*(3+9)+(2^n)*(4+8)

A= 12*[(3^n)+(2^n)]

do 12 chia hết cho 6 nên A chia hết cho 6 ( đpcm)