Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê chí dũng
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
19 tháng 5 2015 lúc 14:45

\(\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow p^2=\left(m-1\right)\left(m+n\right)\)

p là số nguyên tố \(\RightarrowƯ\left(p^2\right)\in N=\left\{1;p;p^2\right\}\)

vì m+n>m-1\(\Rightarrow m-1=1;m+n=p^2\Rightarrow m=2\)

\(\Rightarrow\frac{p}{m-1}=\frac{p}{2-1}=p=\frac{p^2}{p}=\frac{m+n}{p}\)

vậy với m=2;p là các số nguyên tố;n là các số tự nhiên thỏa mãn 2+n=p2

giang ho dai ca
19 tháng 5 2015 lúc 15:02

nguyen thieu cong thanh giải đúng rùi

Phạm Minh Phú
Xem chi tiết
Nguyễn Linh Chi
4 tháng 10 2019 lúc 21:38

Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath

=> \(n+2=p^2\) là số chính phương.

lê duy mạnh
4 tháng 10 2019 lúc 21:38

ta có p^2=(m+n)(m-1)

vì m+n>m-1

>0

m

+n=p^2

m-1=1

suy ra m=2=>n+2=p^2 là số chính phuopwng

Cao Huy Hiếu
Xem chi tiết
Đỗ Hoàng Minh
Xem chi tiết
Dương Thảo Phương
Xem chi tiết
Dương Thảo Phương
24 tháng 9 2016 lúc 10:43

m và n là số tự nhiên => m , n ≥ 0 

p là số nguyên tố 

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)

Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2

Chú ý : m – 1< m + n ( 1 ) 

Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 ) 

Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.

Khi đó m = 2 và tất nhiên 2 + n = p2

Do đó A = p2 - n = 2

Võ Đông Anh Tuấn
24 tháng 9 2016 lúc 10:45

OMG !!!!

Đinh Đức Hùng
Xem chi tiết
Trịnh Thuý Hiền
Xem chi tiết

1,

Đặt A = n3 - n2 + n - 1

Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)

Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :

TH1 : n - 1 = 1 và n2 + 1 nguyên tố 

n = 2 và n2 + 1 = 5 nguyên tố (thỏa)

TH2 : n2 + 1 = 1 và n - 1 nguyên tố 

n = 0 và n - 1 = - 1( ko thỏa)

Vậy n = 2

Khách vãng lai đã xóa

2 , 

Xột số   A = (2n – 1)2n(2n + 1)

A là tích của 3 số tự nhiên liờn tiệp nên A   ⋮   3  

Mặt khỏc 2n – 1 là số nguyên tố   ( theo giả thiết )

                2n  không chia hết cho 3

Vậy 2n + 1 phải chia hết cho 3 ⇒  2n + 1 là hợp số.

Khách vãng lai đã xóa

3 , 

Giải:

Với m=2 thì m2+2=4+2= 6 là hợp số (loại)

Với m=3 thì m2+2 = 9+2= 11 (thoải mãn)

Với m= 3k+1 ( với k ẻ N) thì: m2+2 = (3k+1)2 +2 = 3(3k2+2k+1) là hợp số ( loại)

Với m= 3k+2 thì: m2+2= (3k+2)2 +2 = 3(3k2+4k+2) là hợp số (loại)

Vậy với m= 3 thì m và m2+2 là số nguyên tố. Khi đó m3+ 2= 33+2 = 29 là số nguyên tố.

Khách vãng lai đã xóa
Đinh Đức Hùng
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết
Taegoo
22 tháng 3 2016 lúc 10:57

Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Tài Nguyễn Tuấn - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

Hoang Hung Quan
25 tháng 1 2017 lúc 20:49

\(m;n\in N\Rightarrow m;n\ge0\)

\(p\) là số nguyên tố

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)

Do \(\left(m-1\right)\)\(\left(m+n\right)\) là các ước nguyên dương của \(p^2\)

Lưu ý: \(m-1< m+n\left(1\right)\)

\(p\) là số nguyên tố nên \(p^2\)chỉ có các ước nguyên dương là \(1,p\)\(p^2(2)\)

Từ \((1)\)\(\left(2\right)\) ta có \(m-1=1\)\(m+n=p^2\)

\(\Rightarrow m=2\)\(2+n=p^2\)

Vậy\(A=p^2-n=2\)