a) CMR: có thể tìm được 1 số k sao cho 1983k-1 chia hết cho 105
b) CMR: tồn tại số tự nhiên chỉ toàn số 2 và chia hết cho 1991
Dùng nguyên lí Dirichle để giải các bài tập sau:
1) Viết 20 số tự nhiên vào 20 tấm bìa. CMR: Ta có thể chọn 1 hay nhiều tấm bìa để tổng các số đó chia hết cho 20
2) CMR: tồn tại 1 số tự nhiên chia hết cho 17
a) Gồm toàn chữ số 1 và chữ số 0
b) Gồm toàn chữ số 1
3) CMR: Tồn tại số tự nhiên k để 3k có 3 chữ số tận cùng là 001
4) CHo 51 số tự nhiên khác 0 và không vượt quá 100. CMR:
a) Mỗi số đều viết được 2k.b(k;b thuộc N, b lẻ, k có thể = 0). Xác định khoảng giá trị của k và b
b) Tồn tại 2 số mà số này là bội của số kia
CMR: có 1 số gồm toàn CS 1 chia hết cho 19
CMR tồn tại 1 số gồm CS 0 và 1 chia hết cho 2015
CMR: có thể tìm đc 1 STN K sao cho 19K - 1 chi hết cho 10
Chọn dãy
1; 11; 111; ... ;111...1 (số cuối có 20 c/s 1)
Chắc chắn trong dãy có 2 số có cùng số dư khi chia cho 19
2 số đó là
111..1(a c/s 1); 11..1(b c/s 1) [1< a < b < 20]
=>111..1 - 11..1 chia hết cho 19 [b c/s 1 - a c/s 1]
=>111...100...0 chia hết cho 19 [b - a c/s 1 ; a c/s 0]
=>11..1 x 10a chia hết cho 19 [b-a c/s 1]
Mà (19;10)=1 =>(19;10a)=1
=> 111..1 chia hết cho 19 với b-a c/s 1
Câu 3
Giả Sử: k = 4n
=>194n - 1 = (...1) - 1 = (...0) chia hết cho 10
Vậy có thể tìm đc 1 STN k chia hết cho 10
xét dãy : 191,192,...,1911
các số tự nhiên khi chia cho 10 có 10 ước là: 0,1,2,..,9
Mà dãy số trên có 11 số nên tồn tại ít nhất 2 số tn có cùng số dư khi chia cho 10
gọi 2 số đó là: 19m và 19n
(11>m>n>1 m,n=1)
19m-19n chia hết cho 10
19n.(19m-n -1) chia hết cho 10
mà (10,19)=1 (19n,10)=1
19m-n-1 chia hết cho 10
19k-1 chia hết cho 10 (k=m-n)
19k-1 chia hết cho 10q
vậy tồn tại 1 số tn k sao cho 19k-1 chia hết cho 10
Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
Bài 1
6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp
Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn
Bài 2
5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha
1.CMR trong 12 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 11
2.CMR trong 15 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 14
3.CM tồn tại 1 số chia hết cho 1995 mà các chữ số của số đó chỉ gồm các chữ số 2 và chữ số 0
4.CMR nếu có n số tự nhiên có tích bằng n và có tổng bằng 2012 thì n chia hết cho 4
5.tìm số tự nhiên n sao cho :
a) n+3 chia hết cho n-2 ( n>2)
b)2n+9 chia hết cho n-3 ( n>3)
c)(16-3n ) chia hết cho (n+4) với n<6
d) (5n+2) chia hết cho (9-2n)
Bài 5 : ( Mình dùng dấu chia hết là dấu hai chấm )
a) n+3 : n-2
=> n+3 : n+3-5
=> n+3 : 5 ( Vì n+3 : n+3 )
=> n+3 là Ư(5) => Bạn tự làm tiếp nhé!
b) 2n+9 : n-3
=> n + n + 11 - 3 : n-3
=> n + 11 : n-3
=> n + 14 - 3 : n-3
=> 14 : n - 3 ( Vì n - 3 : n-3 )
=> n-3 là Ư(14) => Tự làm tiếp
c) + d) thì bạn tự làm nhé!
-> Chúc bạn học giỏi :))
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 1 : Với 39 số tự nhiên liên tiếp hỏi rằng có thể tìm được 1 số mà tổng các chữ số của nó chia hết cho 11 hay không ?
Bài 2 : CMR trong 52 số tự nhiên , trí ít cũng có một cặp gồm 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 100
Bài 3 : CMR có thể tìm được số tự nhiên K sao cho 1983^k - 1 chia hết cho 10^5
cmr tồn tại một số tự nhiên cấu tạo từ chỉ một số 2 và chia hết cho 1991. tks nhiều ạ
cmr tồn tại một số tự nhiên cấu tạo từ "chỉ một " số 2 và chia hết cho 1991
1) CMR tồn tại 1 số gồm toàn chữ số 6 chia hết cho 2003
2)CMR tồn tại hay không 1 số tự nhiên só tận cùng là 2002 chia hết cho 2003
3) Cho 2001 số bất kì.CMR có thể chonk 1 hoặc 1 số số mà tổng của chúng chia hết cho 2001
4) Trong 1 tam giác đều cạnh là 1.Ta đặt 17 điểm kể cả trên các cạnh.CMR tồn tai 2 điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 1/4
cmr tồn tại số tự nhiên k sao cho (1999k -1) chia hết cho 104