chứng minh rằng ((1+2+3+...+n)-7) không chia hết cho 10
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng: [(1 + 2 + 3 +...+ n)- 7] không chia hết cho 10 với mọi n e N
Chứng minh rằng [(1+2+3+...+n)-7] không chia hết cho 10 với mọi n thuộc N
Chứng minh rằng ((1+2+3+4+...+n) - 7) không chia hết cho 10 với mọi n thuộc N
tong 1+2+3+...+n=(n+1)n/2 . vi n(n+1) la 2 so tu nhien lien tiep nen tan cung bang 0;2;6 suy ra N=1+2+3+4+5+...+n-7= (n+1)n/2-7
suy ra N tan cung bang 3;4;6 suy ra khong chia het cho 10
Vay con n.(n+1) con phai chia cho 2 nua
Chứng minh rằng:
[(1+2+3+...+n)-7]không chia hết cho 10,với mọi n
Ta có công thức :\(\frac{n.\left(n+1\right)}{2}\)
Giả sử [(1+2+3+.......+n)-7] chia hết cho 10
=>[(1+2+3+.......+n)-7=]\(\frac{n.\left(n+1\right)}{2}-7\)chia hết cho 10
=>\(\frac{n.\left(n+1\right)}{2}\)có tận cùng là 7
Nhưng \(\frac{n.\left(n+1\right)}{2}\)không thể có tận cùng là 7 nên giả thiết là sai và [(1+2+3+.....+n)-7]
khong chia hết cho 10 với mọi n
Nếu bạn muốn hãy hỏi thầy trên lời giải hay (đăng ký hoặc đăng nhập trước nhé)
Chứng minh rằng: ( 1+2+3+4+...+n ) - 7 không chia hết cho 10 (với n thuộc N)
Lời giải:
$A=1+2+3+....+n-7=\frac{n(n+1)}{2}-7=\frac{n^2+n-14}{2}$
Để chứng minh $A\not\vdots 10$, ta chỉ ra $A\not\vdots 5$
Nếu $n\vdots 5$ thì hiển nhiên $n^2+n-14\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+1(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+1)^2+5k+1-14=25k^2+15k-12\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+2(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+2)^2+5k+2-14=25k^2+25k-8\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+3(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+3)^2+5k+3-14=25k^2+35k-2\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+4(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+4)^2+5k+4-14=25k^2+45k+6\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Vậy $A\not\vdots 5$ nên $A\not\vdots 10$
Bài 1:chứng tỏ C=1+7+72+...+730 không chia hết cho 57
bài 2 chứng minh không có số nào chia 15 dư 6 còn chia 9 dư 4
bài 3 chứng minh rằng tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3, còn tổng của 4 số thì không chia hết cho 4
bài 4: chứng minh rằng với n thược tập N ta có :
60n+15 chia hết 15
nhưng 60n +15 không chia hết cho 30
làm đúng 1 câu cho 2 tick làm đúng cả cho 10 tick
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
Chứng minh rằng : [(1+2+3+...+n) -7] không chia hết cho 10 biết n là mọi số tự nhiên .
Ta có:
\(\left(1+2+3...+n\right)-7=\frac{n.\left(n+1\right)}{2}-7\)
Tích của 2 số tự nhiên liên tiếp có tận cùng là 0;2;6 . Khi chia cho 2 thì nó sẽ ko bao giò ra kết quả có tận cùng là 7 nên [(1+2+3+...+n) -7] không chia hết cho 10 bởi ko có tận cùng là 0. (đoán