Giải phương trình
\(\frac{14}{20-6x-2x^2}+\frac{x^4+4x}{x^2+5x}-\frac{x+3}{2-x}+3=0\)
Giải phương trình
a) \(\frac{4}{20-6x-2x^2}\)+ \(\frac{x^2+4x}{x^2+5x}-\frac{x+3}{2-x}+3=0\)
b)\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2-10x}+10=\frac{x+25}{2x^2-50}\)
c) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x.\left(x-2\right)}+\frac{1}{8x-16}\)
Giải các phương trình sau:
\(\frac{3}{4x-20}-\frac{15}{2x^2-50}+\frac{7}{6x+30}=0\)
\(\frac{8x^2}{3-12x^2}+\frac{1+8x}{4+8x}=\frac{-2x}{3-6x}\)
\(\frac{1}{x^2-2x+1}+\frac{1}{x^2+2x=1}=\frac{2}{x^2-1}\)
\(\frac{1}{x^2+1}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}=\frac{4}{5}\)
Giải phương trình
a) \(\frac{4}{20-6x-2x^2}\)+ \(\frac{x^2+4x}{x^2+5x}-\frac{x+3}{2-x}+3=0\)
b)\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2-10x}+10=\frac{x+25}{2x^2-50}\)
c) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x.\left(x-2\right)}+\frac{1}{8x-16}\)
c) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x.\left(x-2\right)}+\frac{1}{8x-16}\)
Giải phương trình:
1. \(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}=\frac{2}{x^2-6x+8}\)
2. \(\frac{x^2+2x+2}{x+1}+\frac{x^2+8x+20}{x+4}=\frac{x^2+4x+6}{x+2}+\frac{x^2+6x+12}{x+3}\)
- Giải các bất phương trình và các phương trình sau:
a. 1-\(\frac{2x-1}{9}\)= 3-\(\frac{3x-3}{12}\)
b. \(\frac{5x-2}{3}-\frac{2x^2-x}{2}>\frac{x\left(1-3x\right)}{3}+\frac{15x}{4}\)
c. \(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)
\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)
\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)
\(\Leftrightarrow108-24x+12=324-27x+27\)
\(\Leftrightarrow3x=231\)
\(\Rightarrow x=77\)
c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)
\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)
\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)
\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
Giải phương trình :
\(\frac{x^2-2x+2}{x-1}+\frac{x^2-8x+20}{x-4}=\frac{x^2-4x+6}{x-2}=\frac{x^2-6x+12}{x-3}\)
ĐK \(x\ne\left\{1;2;3;4\right\}\)
Ta có \(\frac{x^2-2x+2}{x-1}+\frac{x^2-8x+20}{x-4}=\frac{x^2-4x+6}{x-2}+\frac{x^2-6x+12}{x-3}\)
\(\Leftrightarrow\frac{\left(x-1\right)^2+1}{x-1}+\frac{\left(x-4\right)^2+4}{x-4}=\frac{\left(x-2\right)^2+2}{x-2}+\frac{\left(x-3\right)^2+3}{x-3}\)
\(\Leftrightarrow x-1+\frac{1}{x-1}+x-4+\frac{4}{x-4}=x-2+\frac{2}{x-2}+x-3+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{4}{x-4}=\frac{2}{x-2}+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{5x-8}{x^2-5x+4}=\frac{5x-12}{x^2-5x+6}\)\(\Leftrightarrow\left(5x-8\right)\left(x^2-5x+6\right)=\left(5x-12\right)\left(x^2-5x+4\right)\)
\(\Leftrightarrow5x^3-25x^2+30x-8x^2+40x-48=5x^3-25x^2+20x-12x^2+60x-48\)
\(\Leftrightarrow4x^2-10x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}\left(tm\right)}\)
Vậy x=0 hoặc x=5/2
Giải phương trình
\(\frac{x^2-2x+2}{x-1}+\frac{x^2-8x+20}{x-4}=\frac{x^2-4x+6}{x-2}+\frac{x^2-6x+12}{x-3}\)
giải phương trình \(\frac{x^2+2x+2}{x+1}+\frac{x^2+8x+20}{x+4}=\frac{x^2+4x+60}{x+2}+\frac{x^2+6x+12}{x+3}\)
giải phương trình
\(\frac{x^2+2x+2}{x+1}+\frac{x^2+8x+20}{x+4}=\frac{x^2+4x+6}{x+2}+\frac{x^2+6x+12}{x+3}\)
ĐKXĐ: \(x\ne-1,-2,-3,-4\)
\(\Leftrightarrow\frac{\left(x+1\right)^2+1}{x+1}+\frac{\left(x+4\right)^2+4}{x+4}=\frac{\left(x+2\right)^2+2}{x+2}+\frac{\left(x+3\right)^2+3}{x+3}\)
\(\Leftrightarrow x+1+\frac{1}{x+1}+x+4+\frac{4}{x+4}=x+2+\frac{2}{x+2}+x+3+\frac{3}{x+3}\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{x+4}=\frac{1}{x+2}+\frac{1}{x+3}\)
\(\Leftrightarrow\frac{x}{x+1}+\frac{x}{x+4}=\frac{x}{x+2}+\frac{x}{x+3}\)
\(\Leftrightarrow x\left(\frac{1}{x+1}+\frac{1}{x+4}-\frac{1}{x+2}-\frac{1}{x+3}\right)=0\)
\(\Leftrightarrow x\left(\frac{1}{x^2+3x+2}-\frac{1}{x^2+7x+12}\right)=0\)
\(\Leftrightarrow-x\left(\frac{4x+10}{\left(x^2+3x+2\right)\left(x^2+7x+12\right)}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{5}{2}\end{cases}}\)Thỏa mãn ĐKXĐ
Ta có Pt
<=>\(\frac{\left(x+1\right)^2+1}{x+1}+\frac{\left(x+4\right)^2+4}{x+4}=\frac{\left(x+2\right)^2+2}{x+2}+\frac{\left(x+3\right)^2+3}{x+3}\)
<=>\(x+1+\frac{1}{x+1}+x+4+\frac{4}{x+4}=x+2+\frac{2}{x+2}+x+3+\frac{3}{x+3}\)
<=>\(\frac{1}{x+1}+\frac{4}{x+4}=\frac{2}{x+2}+\frac{3}{x+3}\)
<=>\(1-\frac{1}{x+1}+1-\frac{4}{x+4}=1-\frac{2}{x+2}+1-\frac{3}{x+3}\)
<=>\(\frac{x}{x+1}+\frac{x}{x+4}=\frac{x}{x+2}+\frac{x}{x+3}\Leftrightarrow x\left(\frac{1}{x+1}+\frac{1}{x+4}-\frac{1}{x+2}-\frac{1}{x+3}\right)=0\)
<=>\(\orbr{\begin{cases}x=0\\\frac{1}{x+1}+\frac{1}{x+4}-\frac{1}{x+2}-\frac{1}{x+3}=0\left(1\right)\end{cases}}\)
Giải pt (1) , ta có
\(\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}-\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}=0\)
<=>\(\frac{1}{x^2+3x+2}-\frac{1}{x^2+7x+12}=0\Leftrightarrow x^2+3x+2=x^2+7x+12\)
<=>\(4x+10=0\Leftrightarrow x=-\frac{5}{2}\)
nhớ đối chiếu đk nhé !
^_^