Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Minh Quang
Xem chi tiết
Nguyễn Thị Huyền
Xem chi tiết
Phạm Xuân Dương
3 tháng 3 2023 lúc 21:48

Bài này có rắc rối đâu em?

Thực hiện phép tính trong ngoặc lại là ra dạng (n+1)/n.

1 dãy các số liên tục kéo dài nhân với nhau thì triệt tiêu là xong!

Chúc em học tốt!

Nguyển ngọc linh
Xem chi tiết
Dũng Senpai
8 tháng 5 2017 lúc 22:02

\(T=\frac{3.4.5.6.....100}{2.3.4.5.6.....99}\)

Rút ra nhé:

\(T=\frac{100}{2}\)

T=50.

Chúc em học tốt^^

Nguyễn Thị Hoài Anh
Xem chi tiết
TGa
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
5 tháng 10 2019 lúc 19:23

\(3\left(2^2+1\right).\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)....\left(2^{64}+1\right)+1\)

\(=\left(2^8-1\right).\left(2^8+1\right)\left(2^{16}+1\right)....\left(2^{64}+1\right)+1\)

\(=\left(2^{64}-1\right).\left(2^{64}+1\right)+1\)

\(=2^{64}-1+1=2^{64}\)

Vậy : \(3\left(2^2+1\right).\left(2^4+1\right)...\left(2^{64}+1\right)+1=2^{64}\)

Le Vi
Xem chi tiết
New_New
26 tháng 10 2016 lúc 22:01

=\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

=\(\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

=...=2^32-1

đỗ trường giang
26 tháng 10 2016 lúc 22:01

nhân hết ra là xong:))

bài về nhà hs phải tự làm

Le Vi
26 tháng 10 2016 lúc 22:06

Cái bước (22-1)(22 + 1)(2+1)(216+1) làm như thế nào mà ra vậy

Vu Ngoc Thuy Linh_2003
Xem chi tiết
I like English
Xem chi tiết
Nguyễn Thị Huyền Trang
2 tháng 8 2017 lúc 19:30

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)

\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\)

\(\Rightarrow2A-A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)

\(-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)

\(\Rightarrow A=2-\dfrac{1}{2^{2017}}=\dfrac{2^{2018}-1}{2^{2017}}\)

 Mashiro Shiina
3 tháng 8 2017 lúc 8:27

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)

\(2A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)\)

\(2A-A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)

\(A=2-2^{2017}\)

hai
Xem chi tiết
Cố lên Tân
19 tháng 6 2015 lúc 6:13

đề hình như sai thì phải