\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)
\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\)
\(\Rightarrow2A-A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)
\(\Rightarrow A=2-\dfrac{1}{2^{2017}}=\dfrac{2^{2018}-1}{2^{2017}}\)
Đúng 0
Bình luận (0)
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)
\(2A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)\)
\(2A-A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)
\(A=2-2^{2017}\)
Đúng 0
Bình luận (0)