Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
Chứng tỏ rằng với hai số tự nhiên bất kì khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại
(+) Chứng minh chiều thuận
Theo đề ra ta có 2 số thõa mãn là \(\begin{cases}km+x\\lm+x\end{cases}\) ( với k ; l ; m là số nguyên )
Xét hiệu :
\(\left(km+x\right)-\left(lm+x\right)=km-lm=m\left(k-l\right)⋮m\)
(+) Chứng minh chiều đảo :
Ta sẽ c/m bằng phương pháp phản chứng .
Giả sử a - b chia hết cho m ( 1 ) nhưng a và b không có cùng số dư khi chia cho m
\(\Rightarrow\begin{cases}a=mk+x\\b=ml+y\end{cases}\)\(\left(k;m;x;y\in N;x,y< m;x\ne y\right)\)
=> Hiệu \(a-b=\left(mk+x\right)-\left(lk+y\right)\)
\(\Rightarrow a-b=m\left(lk-l\right)+\left(x-y\right)\)
Xét m(k - l ) chia hết cho m
x ; y < m
=> x - y < m
=> x - y không chia hết cho m
\(\Rightarrow m\left(lk-l\right)+\left(x-y\right)⋮̸m\) ( 2 )
(1) và (2) mâu thuẫn
=> Giả sử sai
=> Đpcm
Gia su :a÷m du r,b÷m cung du r ta co:
a=m×n+r
b=m×p+r
a-b=m×n+r-m×p+r=m×n-m×p=m×(n-p)
Trong do m chia het cho m nen khi nhan voi n-p se duoc 1 so chia het cho m.
Chứng tỏ rằng với hai số tự nhiên bất kì khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
Gọi 2 số đó là a , b ( a , b ≠ 0 ; A , B ∈ N )
Ta có : a ⋮ m => a = m.q ( q ≠ 0 ; q ∈ N )
b ⋮ m => b = m.p ( p ≠ 0 ; p ∈ N )
=> a - b = m.q - m.p = m( q - p )
Vì m ⋮ m => m ( q - p ) ⋮ m => a - b ⋮ m
=> đpcm
Chứng tỏ rằng với hai số tự nhiên bất kì khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại
Gọi a , b là 2 số chia cho m có cùng số dư
=> a = mk + r ( m là số chia, k là thương, r là số dư)
b = mt + r ( m là số chia, t là thương, r là số dư)
Khi đó a - b = (mk + r ) - (mt + r) = mk + r - mt - r
= mk - mt
= m( k - t)
Vì m chia hết cho m nên m(k - t ) chia hết cho m
hay a - b chia hết cho m
Vậy nếu a và b chia cho m có cùng số dư thì a - b chia hết cho m
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!
Chứng tỏ rằng với 2 số tự nhiên bất kì khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại
Chứng tỏ rằng với 2 số tự nhiên bất ki khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại
Chứng tỏ rằng với hai số tự nhiên bất kì khi chia cho m có cùng số dư thí hiệu của chúng chia hiết cho 5 .
Chứng tỏ rằng với hai số tự nhiên bất kì khi chia cho m có cùng số dư thí hiệu của chúng chia hiết cho 5 .
cau trả lời không cần đúng chỉ cần nhanh nhất
Ha Ha !
Chứng tỏ rằng với hai số tự nhiên bất kì khi chia cho m có cùng số dư thí hiệu của chúng chia hiết cho 5 .
Sai đề hoặc thiếu bạn nhé
Mình sẽ cho 1 ví dụ phản chứng
3 và 5 có cùng số dư khi chia cho 2 ( m )
Hiệu 5 - 3 = 2 không chia hết cho 5
Chứng tỏ rằng:
a. Trong 3 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho tổng của chứng chia hết cho 2.
b. Nếu hai số tự nhiên a và b (a>b) khi chia cho số tự nhiên m có cùng số dư thì a-b chia hết cho m.
c. Trong 6 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho hiệu của chúng chia hết cho 5.