Hai số tự nhiên a và 2a đều có tổng các chữ số bằng chữ số k.Chứng minh rằng a chia hết cho 9.
Hai số tự nhiên a và 2a đều có tổng các chữ số bằng k. Chứng minh rằng a chia hết cho 9.
Hai số tự nhiên a và 2a đều có tổng các chữ số bằng k.Chứng minh rằng a\(⋮\)3
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9, do đó hiệu của chúng chia hết cho 9.
Như vậy : \(2k-a⋮9\)
và \(:a-k⋮9\)
Suy ra : ...
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9, do đó hiệu của chúng chia hết cho 9.
Như vậy : \(2a-k⋮3\)
và \(a-k⋮3\)
Suy ra : \(a⋮3\)
...
Hai số tự nhiên a và 2a đều có tổng các chữ số là k.hãy chứng minh rằng a chia hết cho 9
Lời giải:
Một số tự nhiên có cùng số dư khi chia cho 9 với tổng các chữ số của nó. Tức là:
$a-S(a)\vdots 9$
$2a-S(2a)\vdots 9$
$\Rightarrow a-k\vdots 9; 2a-k\vdots 9$
$\Rightarrow (2a-k)-(a-k)\vdots 9$
$\Rightarrow a\vdots 9$
Cho 2 số tự nhiên a và 2a đều có tổng các chữ số bằng k. Chứng minh rằng: a chia hết cho 9
đề ra mập mờ quá
a và 2a
thế 2a là 2.a hay là 2a nói chung hiểu kiểu gì cũng sai
không tồn tại
người ra đề thử tìm hộ tôi một số a cụ thể nào thỏa mãn đề bài xem nào?
sau đó mới nâng cấp lên tổng quát.
Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.
Đặt a = 9q + r
2a =9k + r
(q; k; r thuộc N*; k > q)
=> 2a - a = a
=> (9k + r) - (9q + r)
=> 9k + r - 9q - r
=> 9(k - q) chia hết cho 9.
=> a chia hết cho 9
#ngonhuminh nói đúng đó
Hai số tự nhiên a và 2a đều có tổng các chữ số giống nhau.Chứng minh a chia hết cho 9
vì tổng các chữ số có cùng dư khi chia cho 9
và a và 2a có tổng các chữ số giống nhau nên a và 2a có cung dư khi chia cho 9
Đặt a=9q+r
2a=9k+r
(q,k,r thuộc N; k>q)
=>2a-a=a=(9k+1)-(9q+r)
=9k+r-9q-r
=9(k-q) chia hết cho 9
=> a chia hết cho 9 (ĐPCM)
Hai số tự nhiên a và 2a đều có tổng các chữ số là k . Chứng minh rằng achia hết cho 9
Cho 2 số tự nhiên A và 2A đều có tổng các chữ số là k. Chứng minh A chia hết cho 9
Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.
Đặt a = 9q + r
2a =9k + r
(q; k; r thuộc N*; k > q)
=> 2a - a = a
=> (9k + r) - (9q + r)
=> 9k + r - 9q - r
=> 9(k - q) chia hết cho 9.
=> a chia hết cho 9.
hai số tự nhiên a và 4a đều có tổng các chữ số bằng nhau . chứng minh rằng a chia hết cho 3
Một số và tổng các chữ số của chúng khi chia cho 9 có cùng số dư và hiệu của chúng chia hết cho 9
Gọi tổng các chữ số của a và 4a là k, ta có:
4a - k chia hết cho 9
a - k chia hết cho 9
=> (4a - k ) - ( a -k) chia hết cho 9
=> 3a chia hết cho 9
=> a chia hết cho 3 (đpcm)
hai số tự nhiên a và 4a đều có tổng các chữ số bằng nhau . chứng minh rằng a chia hết cho 3
Bạn tham khảo ở đây: https://olm.vn/hoi-dap/question/288658.html