Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hiền Thương

Những câu hỏi liên quan
Nguyễn Mai
Xem chi tiết
Nguyễn Thị Cẩm Ly
Xem chi tiết
Aoi Ogata
28 tháng 1 2018 lúc 21:12

bạn ơi đề khó nhìn vậy  

Nguyễn Thị Cẩm Ly
28 tháng 1 2018 lúc 21:51
bạn giúp mk vs đk k bạn
Dương Văn Quang
Xem chi tiết
Nguyễn Khắc Tùng Lâm
Xem chi tiết
Kakashi
Xem chi tiết
Bui Huu Manh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2017 lúc 15:00

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 1 2017 lúc 4:15

ĐKXD:

Ta có:

BBT:

Từ BBT ta có: t ∈ - 1 ; 2 .

Khi đó phưng trình trở thành:

Hàm số đồng biến trên R Hàm số đồng biến trên - 1 ; 2 .

 

Từ

Chọn B.

Camthe Thi
Xem chi tiết
Nguyễn Đức Anh
6 tháng 4 2020 lúc 15:01

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Khách vãng lai đã xóa
Phạm Mạnh Hùng
7 tháng 4 2020 lúc 11:24

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Khách vãng lai đã xóa
Phạm Anh Tuấn
12 tháng 4 2020 lúc 15:10

Mình không biết sin lỗi vạn

Khách vãng lai đã xóa
Đặng Nhật Minh
Xem chi tiết
alibaba nguyễn
7 tháng 11 2019 lúc 15:10

b/ \(2^x+2^y+2^z=552\)

\(\Leftrightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=2^3.69\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\1+2^{y-x}+2^{z-x}=69\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\2^y+2^z=544\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow2^y\left(1+2^{z-y}\right)=2^5.17\)

\(\Leftrightarrow\hept{\begin{cases}y=5\\1+2^{z-y}=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=5\\z=9\end{cases}}\)

Vậy \(x=3;y=5;z=9\)

Khách vãng lai đã xóa
alibaba nguyễn
7 tháng 11 2019 lúc 14:52

a/ Dễ thấy: \(z>x,y\)

Xét \(x>y\)

\(\Rightarrow2^x\left(1+2^{y-x}-2^{z-x}\right)=0\)

Loại vì \(2^x\left(1+2^{y-x}-2^{z-x}\right)< 0\)

Tương tự cho trường hợp \(x< y\)

Xét \(x=y\)

\(2^x+2^y=2^z\)

\(\Leftrightarrow2^{x+1}=2^z\)

\(\Leftrightarrow x+1=z\)

Vậy nghiệm là: \(x=y=z-1\)

Khách vãng lai đã xóa