Tìm giá trị lớn nhất của x:
E = 18 - |x - 13|
Cho x ϵ { -21,-20,-19,-18,-17} ,y ϵ { -3,-4,...,-13,-14 }
a, Có bao nhiêu gía trị x+y khác nhau
b, Tìm giá trị lớn nhất và nhỏ nhất của x+y
chứng minh biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến x:E=x^2+2x+15
\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)
E=(x2+2x+1)+14=(x+1)2+14
ta có (x+1)2 >=0 với mọi x
suy ra E=(x2+2x+1)+14=(x+1)2+14 >0 với mọi biến x
tìm giá trị nhỏ nhất của M= x(x- 4)+13 ;
tìm giá trị lớn nhất của P= x(10- x)+6
\(M=x^2-4x+4+9=\left(x-2\right)^2+9\ge9\Rightarrow MinM=9\Leftrightarrow x=2\)
\(P=10x-x^2+6=-\left(x^2-10x+25\right)+25+6=31-\left(x-5\right)^2\le31\Rightarrow MaxP=31\Leftrightarrow x=5\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 18 - x 2
A. m a x y = 6 ; m i n y = - 3 2
B. m a x y = 3 2 ; m i n y = - 3 2
D. m a x y = 6 ; m i n y = 0
D. m a x y = 6 ; m i n y = 3 2
tìm số tự nhiên y để biểu thức A = 218 - ( 2 x Y -18) có giá trị lớn nhất và tìm giá trị lớn nhất của A
1) tìm giá trị nhỏ nhất của M = x(x-4) + 13
2) tìm giá trị lớn nhất của P = x(10-x) +6
1) tìm giá trị nhỏ nhất của M = x(x-4) + 13
M=x(x-4)+13=x2-4x+13
=x2-4x+4+9
=(x-2)2+9\(\ge\)9(vì (x-2)2\(\ge\)0)
Dấu "=" xảy ra khi x-2 =0
<=>x=2
Vậy giá trị nhỏ nhất của M là 9 tại x=2
2) tìm giá trị lớn nhất của P = x(10-x) +6
P = x(10-x) +6=10x-x2+6=-x2+10x-25+31
=-(x2-10x+25)+31
=-(x-5)2+31\(\le\)31(vì -(x-5)2\(\le\)0)
Dấu = xảy ra khi x-5=0
<=>x=5
vậy giá trị lớn nhất của P là 31 tại x=5
Tìm giá trị nhỏ nhất của biểu thức : |x +19| + |y - 5| + 1890
Tìm giá trị lớn nhất của biểu thức : -|x - 7| - |y + 13| + 1945
a) \(A=\left|x+19\right|+\left|y-5\right|+1890\)
TA có: \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge}0;\forall x,y\)
\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
Vậy \(A_{min}=1890\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
b) \(B=-\left|x-7\right|-\left|y+13\right|+1945\)
Ta có: \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)
\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)
Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Vậy MAX\(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Tìm giá trị lớn nhất của
A= 25 - (X-2)2
Tìm giá trị nhỏ nhất của
B= 13+3/x-1/
GIÚP MÌNH VỚI MÌNH ĐANG GẤP ! XIN CẢM ƠN !!!
a) tìm giá trị nhỏ nhất của biểu thức : A= (x-2) mũ 2 + 24
b) tìm giá trị lớn nhất của biểu thức :B= -x mũ 2 + 13/5
a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)
Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy GTNN của A là 24 khi x=2.
b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)
Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)
Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0
Ai trả lời nhanh và đúng mik give tick xanh nhé.