cho đa thức f(x)=ax^2 +bx +c.Biết rằng các giá trị của đa thức tại x=0;x=1;x= -1 đều là những số nguyên .chứng tỏ rằng 2a;a+b;c là những số nguyên
cho đa thức f(x)=ax^2 +bx +c.Biết rằng các giá trị của đa thức tại x=0;x=1;x= -1 đều là những số nguyên .chứng tỏ rằng 2a;a+b;c là những số nguyên
cho đa thức f(x)=ax2+bx+c. Biết rằng các giá trị của đa thức tại x=0, x=1, x=-1 đều là những số nguyên. Chứng tỏ rằng 2a, a+b, c là những số nguyên
Bạn tham khảo câu trả lời của anh ali tại đây:
Câu hỏi của Dương Thúy Hiền - Toán lớp 8 - Học toán với OnlineMath
Cho đa thức: f(x)=a.x^2+b.x+c.Biết rằng các giá trị của đa thức tại x=0, x=1, x=-1 đều là những số nguyên. Chứng tỏ rằng 2a, a+b, c là những số nguyên
thay x = 0 vào f ta có:
f(0) = c mà đa thức tại x = 0 là số nguyên
=> c là số nguyên
thay x = 1 vào f ta có:
f(1) = a + b + c mà đa thức tại x = 1 là số nguyên và c là số nguyên
=> a + b là số nguyên
thay x = -1 vào f ta có:
f(-1) = a - b + mà đa thức tại x = -1 là số nguyên và c là số nguyên
=> a - b là số nguyên
ta có: a + b là số nguyên và a - b là số nguyên
=> (a+b) + (a-b) là số nguyên
=> 2a là số nguyên
Cho đa thức: f(x)= ax2+ bx+ c. Biết rằng các giá trị của đa thức tại x=0, x=1, x= -1 đều là những số nguyên. Chứng tỏ rằng 2a, a+b, c là những số nguyên
f(x)=ax2+bx+c
Ta có:f(0)=a.02+b.0+c=c
Mà f(0) \(\in\) Z(theo đề)=>c \(\in\) Z
f(1)=a.12+b.1+c=a+b+c
Mà f(1) \(\in\) Z(theo đề)=>a+b+c \(\in\) Z
Vì c \(\in\) Z => a+b \(\in\) Z (1)
f(-1)=a.(-1)2+b.(-1)+c=a-b+c
Mà f(-1) \(\in\) Z => a-b+c \(\in\) Z
Vì c \(\in\) Z => a-b \(\in\) Z (2)
Từ (1) và (2)=> \(\left(a+b\right)+\left(a-b\right)\in Z\Rightarrow2a\in Z\)
Vậy c,a+b,2a đều là những số nguyên (đpcm)
nguyễn thanh tùng vs Thiên ngoại phi tiên:các người copy trắng trợn vậy mà ko biết xấu hổ hả?
f(x)=ax2+bx+c
Ta có:f(0)=a.02+b.0+c=c
Mà f(0) $\in$∈ Z(theo đề)=>c $\in$∈ Z
f(1)=a.12+b.1+c=a+b+c
Mà f(1) $\in$∈ Z(theo đề)=>a+b+c $\in$∈ Z
Vì c $\in$∈ Z => a+b $\in$∈ Z (1)
f(-1)=a.(-1)2+b.(-1)+c=a-b+c
Mà f(-1) $\in$∈ Z => a-b+c $\in$∈ Z
Vì c $\in$∈ Z => a-b $\in$∈ Z (2)
Từ (1) và (2)=> $\left(a+b\right)+\left(a-b\right)\in Z\Rightarrow2a\in Z$(a+b)+(a−b)∈Z⇒2a∈Z
Vậy c,a+b,2a đều là những số nguyên (đpcm)
Cho đa thức f(x)=ax2+bx+c. Biết rằng các giá trị của đa thức tại x=0;x=1;x = -1 ddều là những số nguyên .
Chứng tỏ rằng 2a;a+b;c là những số nguyên
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(f\left(0\right)=a.0^2+b.0+c=c\)
Mà theo đề: \(f\left(0\right)\in Z\Rightarrow c\in Z\)
\(f\left(1\right)=a.1^2+b.1+c=a+b+c\)
Mà theo đề: \(f\left(1\right)\in Z\Rightarrow a+b+c\in Z\)
Lại có: \(c\in Z\Rightarrow a+b\in Z\left(1\right)\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)
Mà theo đề: \(f\left(-1\right)\in Z\Rightarrow a-b+c\in Z\)
Lại có:\(c\in Z\Rightarrow a-b\in Z\left(2\right)\)
Lấy (1)+(2),vế theo vế:
\(\Rightarrow\left(a+b\right)+\left(a-b\right)\in Z\Rightarrow2a\in Z\)
Vậy 2a;a+b;c là những số nguyên (đpcm)
1,Tìm các hệ số AB của đa thức f(x) = ax + b, biết : f(1)=1; f(2)=4
2, cho đa thứcf(x) : ax mũ 2 + bx + c = 0 ( vs mọi giá trị x ) . CMR : a=b=c=0
3, Cho đa thức f(x) thỏa mãn, f(x) + x. f(-x) = x+1 vs mọi giá trị của x. Tính f(1)
đề bài toán lớp 7 : ho đa thức : f (x) = \(ax^2+bx+c\) . Biết rằng các giá trị cuả đa thức tại x = 0 , x = 1 , x = -1 đều là những số nguyên . Chúng tỏ rằng 2a , a + b , c là những số nguyên.
thay x = 0 vào f ta có:
f(0) = c mà đa thức tại x = 0 là số nguyên
=> c là số nguyên
thay x = 1 vào f ta có:
f(1) = a + b + c mà đa thức tại x = 1 là số nguyên và c là số nguyên
=> a + b là số nguyên
thay x = -1 vào f ta có:
f(-1) = a - b + mà đa thức tại x = -1 là số nguyên và c là số nguyên
=> a - b là số nguyên
ta có: a + b là số nguyên và a - b là số nguyên
=> (a+b) + (a-b) là số nguyên
=> 2a là số nguyên
cho đa thức f(x)=ax^2+bx+c biết rằng các giá trị của đa thức tại x=0,x=1, x=-1 đều là những số nguyên chứng tỏ rằng 2a, a+b, c dều là những số nguyên
ai làm xong trước mình tích
Ta có: f(0) = a.0 + b.0 + c = 0 + c = c
Mà f(0) là số nguyên nên c là số nguyên (1)
f(1) = a.1^2 + b.1 + c = a + b + c
Vì c là số nguyên nên a + b là số nguyên (2)
f(-1) = a.(-1)^2 + b.(-1) + c = a - b + c
Vì c là số nguyên nên a - b là số nguyên (3)
Mà tổng hai số nguyên là 1 số nguyên nên (a+b) + (a-b) cũng là số nguyên
hay 2a là số nguyên (4)
Từ (1), (2) và (4) ta suy ra: 2a, a+b, c đều là số nguyên
cho đa thức f(x)=ax2+bx+c.biết mọi giá trị nguyên của f(X) đều chia hết cho 13 .ch/m ab chia hết chô 169