1)tính tổng biết S = 1+2+2^2+....+2^9+2^10
tính tổng s=(1/2+1/3+1/4+...+1/10)+(2/3+2/4+...+2/10)+...+(8/9+8/10)+9/10
Bài 1: Biết rằng \(1^3+2^3+3^3+...+10^3=3025\). Tính tổng \(S=1^3+2^3+3^3+...+n^3\).
Bài 2: Biết rằng \(1^2+3^2+5^2+...+21^2=1771\). Tính tổng \(S=6^2+18^2+30^2+...+126^2\).
Bài 3: Biết rằng \(1^2+3^2+5^2+...+21^2=1771\). Tính tổng \(S=1^2+3^2+...+\left(2n-1\right)^2\).
Bài 4: Tính tổng \(A=\)\(\sqrt{2+\frac{1}{4}}+\sqrt{1+\frac{1}{4}+\frac{1}{9}}+\sqrt{1+\frac{1}{9}+\frac{1}{16}}+...+\sqrt{1+\frac{1}{43264}+\frac{1}{43681}}\)
Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)
\(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)
\(=6^2.1771=36.1771=63756\)
biết rằng 1^2+2^2+3^2+...+10^2=385. tính tổng s = 2^2+4^2+...+20^2
gọi tổng đầu là A
22A=(1.2)2+(2.2)2+...+(2.10)2
4A = 22+42+62+..+202=> 4A = S = 385 .4 = 1460
Ta thấy:
22 = 12 * 22
42 = 22 * 22
62 = 32 * 22
.................
202 = 102 * 22
Vậy:
S = 12 * 22 + 22 * 22 + 32 * 22 + ... + 102 * 22
S = 22 * ( 12 + 22 + 32 + ... + 102 )
S = 4 * 385
S = 1540
Biết rằng : 1^2 + 2^2 + 3^3 + ... + 10^2 = 385. Tính tổng : S = 2^2 + 4^2 + ... +20^2
Đặt T = 12 + 22 + ... + 102 = 385
=> T x 22 = 12. 22 + 22. 22 + ... + 102.22 = 385. 22
=> T x 22 = (1.2)2 + (2. 2)2 + ... + (10.2)2 = 385. 22
=> T x 22 = (2)2 + (4)2 + ... + (20)2 = 385. 22
=> T x 22 = S = 385. 22
=> S = 385 x 4
olm duyệt
Tính các tổng sau:
1, S=1-2+3_4+..+25-26
2, S=1-3+5-7+...+49-51
3, S=-1+3-5+7-...-53+55
4, S=2-4+6-8+...+22-24
5, S=-2+4-6+8-...-26+28
6, S=2-5+8-11+...-29+32
7, S=-1+5-9-13-...-41-45
8, S=1-5+9-13+...++89-93
9, S=2-4+6-8+...+202-204
10, S=1-6=11-16+21-26+...+171-176
huhu giúp mình với ạ 2h chiều nay mình phải nộp r =(((
Tính các tổng sau:
1, S=1-2+3_4+..+25-26
S =-1+3-5+7-...-53+55 ( có 28 số hạng )
= (-1+3)+(-5+7)+...+(-53+55) ( có 28:2=14 nhóm )
= 2+2+...+2
= 2 . 14
= 28
3
S =-1+3-5+7-...-53+55 ( có 28 số hạng )
= (-1+3)+(-5+7)+...+(-53+55) ( có 28:2=14 nhóm )
= 2+2+...+2
= 2 . 14
= 28
bai 1 :tính tổng N=1^2+2^2+3^2+...+99^2
bài2: tính tổng A=1+4+9+16+25+36+...+100000
bài3: tính tổng S=1^2+3^2+5^2+...+49^2
bài4:tính tổng S=1^2+3^2+5^2+...+99^2
giúp mik với mik đang cần gấp
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
xin loi mik danh nham nhe bai do la 10000 nhe
Cho biết 1^2 + 2^3 + 3^2+....+9^2+10^2 =385. Không dùng máy tính cầm tay em hãy tính: S=10^2+20^3+30^2+...+90^2+100^2
Lời giải:
$S=10^2+(10.2)^2+(10.3)^2+...+(10.9)^2+(10.10)^2$
$=10^2(1^2+2^2+3^2+...+9^2+10^2)$
$=100.385=38500$
2. Tính tổng S trong mỗi trường hợp sau:
a) S = 1 - 2 + 3 - 4 + 5 - 6 + ... + 2013 - 2014
b) S = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + 9 -10
a) S=1-2+3-4+5-6+...+2013-2014
=(1-2)+(3-4)+(5-6)+...+(2013-2014)
=(-1)+(-1)+(-1)+....+(-1) có 1007 số
=(-1007)
Tính tổng
S=1/2*3+1/3*4+....+1/9*10
S = \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{5}\)