Chứng răng : ( a^2+a.b+b^2 ) chia hết cho 10 thì ( a^3 - b^3 )chia hết cho 1000 (a;b thuộc Z )
Các bn giúp mk nhé !!!
2.Cho biểu thức P=(a+b+c).(a.b+b.b+a.c)-2.a.b (với a;b;c thuộc Z).Chứng minh nếu a+b+c chia hết cho 4 thì P chia hết cho 4
3. Cho 3 số nguyên a;b;c thỏa mãn a^2+b^2=c^2.Chứng minh :
Câu a:a.b.c chia hết cho 3
Câu b:a.b.c chia hết cho 12
4.Cho p là số nguyên tố >7.Chứng minh 3^p-2^p-1 chia hết cho 42.p
5.Chứng minh với mọi STN thì n^3-n+2 không chia hết cho 6
chứng minh rằng nếu ( a2+ab+b2) chia hết cho 10 thì ( a3-b3) chia hết cho 1000
Bài tập chứng minh rằng
a) 8^5 + 16^4 chia hết cho 3
b) 2^8 +2^9+2^10
c) a.b chia hết cho 3 dư 2 , biết a chia cho 3 dư 1 và b chia cho 3 dư 2
Chứng minh rằng nếu ( \(a^2\)+ a.b + \(b^2\)) thì ( \(a^3\)- \(b^3\)) chia hết cho 1000 , a;b thuộc Z
CHỨNG TỎ RẰNG :
a) A=2+2^2+2^3+2^4+...+2^10 CHIA HẾT CHO 31
b)B=12^1980-2^1000 CHIA HẾT CHO 10
a) A = \(\left(2+2^2+2^3+...+2^5\right)+\left(2^6+2^7+...+2^{10}\right)\)
\(=\left(2.31\right)+2^5.31=31.\left(2+2^5\right)\)
Vậy A chia hết cho 31
1.Cho a,b thuộc N
A) chứng minh rằng: Nếu (10.a+3.b) chia hết cho & thì (4.b-3.a) chia hết cho
B)chứng minh rằng: Nếu(2.a+3.b) chia hết cho 13 thì (9.a +7.b) chia hết cho 13
2.Chứng minh:
a)3366+7755-2 chia hết cho 5
b)8102-2102 chia hết cho 10
Nhanh giúp mình với nhé
cho a^2 +ab + b^2 chia hết cho 10. CMR (a^3 - b^3) chia hết cho 1000
1) Chứng minh rằng nếu a chia hết cho m và b chia hết cho n thi a.b chia hết cho m.n
2)Chứng minh rằng nếu n chia hết cho 12(n khac 0) thì 1+3+5+7+.....+(2n-1) chia hết cho 144
Bài 1: Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2. Hỏi tích A = a.b chia cho 3 dư bao nhiêu ?
Bài 2: Chứng minh rằng với mọi nÎ Z thì
a) n.(n + 5) - (n - 3).(n + 2) chia hết cho 6.
b) (n - 1).(n + 1) - (n - 7).( n - 5) chia hết cho 12.
Bài 3: Xác định các hệ số a; b; c biết
a) (2x - 5).(3x + b) = ax2 + x + c
b) (ax + b).(x2 - x - 1) = ax3 + cx2 - 1
Bài 2:
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-n^2+12n-35\)
\(=12n-36⋮12\)