Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lâm Tùng Quân
Xem chi tiết
Luffy Nguyễn
18 tháng 7 lúc 15:34

Ta có: C = 2 + 22 + 23 + ..... + 22011 + 22012

=> C = (2 + 22) + (23 + 24) + ..... + ( 22011 + 22012 )

=> C = 2.(1 + 2) + 23.(1 + 2) + ........ + 22011.(1 + 2)

=> C = 2.3 + 23.3 + ..... + 211.3

=> C = 3.(2 + 23 + ..... + 211) chia hết cho 3

ko biết
Xem chi tiết
Tâm Nguyễn
Xem chi tiết
Quân Nguyễn Minh
Xem chi tiết
Thanh Hiền
10 tháng 12 2015 lúc 15:14

http://olm.vn/hoi-dap/question/93424.html

Bạn vào đây tham khảo nhé !!!

Transformers
10 tháng 12 2015 lúc 15:20

A= 2+2^2+2^3+...+2^2010+2^2011+2^2012

A= (2^1+2^2).1+(2^1+2^2).2^2+...+(2^1+2^2).2^2010

A= 6.1+6.2^2+...+6.2^2010

A= 6.(1+2^2+...+2^2010) chia hết cho 6

Vậy A chia hết cho 6                        3 TICK NHA!

Transformers
10 tháng 12 2015 lúc 15:14

do A chia hết cho 6-> A chia hết cho 6

Soobin
Xem chi tiết
Nghĩa Hiếu
Xem chi tiết

A = 32 + 102011 + 102012 + 102013 + 22014 

A = 4.8 + 103.(102008 + 102009  + 102010) + 23.22011

A = 4.8 + 23.53.(102008 + 102009 + 102010) + 23.22011

A = 4.8 + 8.53.(102008 + 102009 + 102010) + 8. 22011

A = 8.(4 + 53.(102008 + 102009 + 102010 + 22011) ⋮ 8 (đpcm)

 

huy luong van
Xem chi tiết

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

                           Bài 3: 

Đây là toán nâng cao chuyên đề tính chất chia hết của một tích, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                               Giải:

A = (n + 20132012).( n + 20122013)

TH1: Nếu n  là số chẵn ta có:

    2012 là số chẵn nên 20122013 là số chẵn suy ra n + 201213 là số chẵn. Mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số chẵn (1)

TH2: Nếu n là số lẻ ta có:

   2013 là số lẻ nên 20132012 là số lẻ khi đó ta có 

  n + 20132012 là số chẵn vì tổng của hai số lẻ là một số chẵn mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số lẻ (2)

Kết hợp (1) và (2) ta có:

A = (n + 20132012).(n + 20122013) ⋮ 2 ∀ n \(\in\) N

     

 

 

Khuôn bậc cảm xúc
Xem chi tiết
Le Thi Khanh Huyen
25 tháng 5 2015 lúc 11:01

Ta có:

A= 2+22+23+...+22010+22011+22012

A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)+(2^2011+2^2012)

A=(2+2^2)+2^2(2+2^2)+...+2^2008(2+2^2)+2^2010(2+2^2)

A=6+2^2x6 + .....+2^2008x6 + 2^2010x6

A=6x(1+2^2+...+2^2008+2^2010) chia hết cho 6 

Vậy A chia hết cho 6

Le Thi Khanh Huyen
25 tháng 5 2015 lúc 11:01

Bạn vào mục câu hỏi tương tự ấy!

thien ty tfboys
25 tháng 5 2015 lúc 11:03

 S =(2 + 22) + ( 23 + 24 ) +……..+ ( 22011 + 22012 )
                               = (2 + 22) +26(2 + 22) + ……….22010(2 + 22)
                               =      6       +      22.6   + ………22010.6
                               = 6 ( 1 + 22 + ……+ 22010 )
vậy  chia hết cho 6

Nguyễn Thị Thủy Tiên
Xem chi tiết
Nguyễn Đình Dũng
22 tháng 11 2014 lúc 10:52

Ta có:

A= 2+22+23+...+22010+22011+22012

A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)+(2^2011+2^2012)

A=(2+2^2)+2^2(2+2^2)+...+2^2008(2+2^2)+2^2010(2+2^2)

A=6+2^2x6 + .....+2^2008x6 + 2^2010x6

A=6x(1+2^2+...+2^2008+2^2010) chia hết cho 6 

Vậy A chia hết cho 6