cmr (ax+by)^2 ≤ (a^2+b^2)(x^2+y^2)
cho (a^+b^2) (x^2+y^2)=(ax+by)^2 . CMR a/x=b/y
(a2+b2) (x2+y2)=(ax+by)2
<=>a2x2+a2y2+b2x2+b2y2=a2x2+2axby+b2y2
<=>a2x2+a2y2+b2x2+b2y2-a2x2-2axby-b2y2=0
<=>a2y2+b2x2-2aybx=0
<=>(ay-bx)2=0
<=>ay-bx=0
<=>ay=bx
=>a/x=b/y
Cho ax + by + cz = 0. CMR:
ax^2 + by^2 + cz^2/ bc(y-z)^2 + ca(z-x)^2 + ab(x-y)^2 = 1/a+b+c
cho x/a+y/b+z/c cmr (x^2+ y^2+z^2)(a^2+b^2+c^2)=(ax+by+cz)^2
CMR nếu x/a=y/b=z/c thì (x^2+y^2+z^2)(a^2+b^2+c^2)=(ax+by+cz)^2
biến đổi tương đương thì dài dòng quá
ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)
=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)
mặt khác ta có: x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)
từ (1) và (2) ta => (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2 => đpcm
Chúc bn hok tốt
1.cho x,y thỏa mãn: ax+by=c,bx+cy=a,cx+by=b
CMR:a^3+b^3+c^3=3abc.
2.cho a,b,c khác 0 sao cho:ay-bx/c=cx-az/b=bz-cy/a
CMR:(ax+by+cz)=(x^2+y^2+z^2)(a^2+b^2+c^2)
\(1.\)
Theo đề ra, ta có:
\(ax+by=c\)
\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(cx+by=b\)
\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)
Khi đó ta có:
\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)
Đặt: \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}=G\)
\(\Rightarrow G=\frac{cay-cbx}{c^2}=\frac{bcx-baz}{b^2}=\frac{abz-acy}{a^2}\)
\(\Rightarrow G=\frac{cay-cbx+bcx-baz+abz-acy}{c^2+b^2+a^2}\)
\(\Rightarrow G=0\)
\(\Rightarrow\left(ay-bx\right)^2=\left(cx-az\right)^2=\left(bz-cy\right)^2=0\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
Cmr : ( a^2 + b^2 ).( x^2 + y^2 ) = ( ax - by )^2 + ( ay + bx )^2
Ta có:
(\(a^2+b^2\)).(.\(x^2+y^2\)) = \(a^2.\left(x^2+y^2\right)+b^2.\left(x^2+y^2\right)\)
<=>\(ax^2-ay^2+bx^2-by^2\)
<=> \(\left(ax-by\right)^2+\left(ay+bx\right)^2\)
=> ĐPCM
VT: ( ax - by) ^ 2+ (ay +bx)^ 2
= (ax)^2 - 2axby + (by)^2 + (ay)^2+ 2aybx + (bx)^2
= (ax)^2 + (by)^2 + (ay)^2+ (bx)^2
= a^2 ( x^2 + y^2) + b^2 (x^2 + y^2)
= (a^2 +b^2) ( x^2+ b^2) = VP (dpcm)
biết x = a^2 - bc , y^2 = b^2 - ac , z = c^2 - ab . Cmr : ( x+y+z)(a+b+c)=ax+by+cz
Ta có : \(x=a^2-bc\Rightarrow ax=a^3-abc\); \(y=b^2-ac\Rightarrow by=b^3-abc\); \(z=c^2-ab\Rightarrow cz=c^3-abc\)
\(\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc\)
Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)\)
Vậy : \(\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz\)(đpcm)
Bạn lưu ý đề bài ở chỗ \(y^2=b^2-ac\)bạn ghi sai nhé, phải là \(y=b^2-ac\)
Bạn nhớ ghi thêm điều kiện x,y,z khác 0 nữa nhé :))
biết x = a^2 - bc , y^2 = b^2 - ac , z = c^2 - ab . Cmr : ( x+y+z)(a+b+c)=ax+by+cz
biết x = a^2 - bc , y^2 = b^2 - ac , z = c^2 - ab . Cmr : ( x+y+z)(a+b+c)=ax+by+cz