Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngyễn Diệu Anh
Xem chi tiết
Saiyan Super
Xem chi tiết
Nguyễn Quốc Thái
Xem chi tiết
QuocDat
2 tháng 11 2017 lúc 18:27

b) Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=kb\\\frac{c}{d}=k\Rightarrow c=kd\end{cases}}\)

VT : \(\frac{5a+3b}{5a-3b}\Rightarrow\frac{5kb+3b}{5ka-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (1)

VP : \(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (2)

Từ (1) và (2) => đpcm

vu tien dat
Xem chi tiết
Lê Minh Anh
27 tháng 8 2016 lúc 11:36

a/ Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=k^3\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Áp dụng tính chất của tỉ lệ thức ta có:\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)

Mặt khác: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a+b+c}{b+c+d}=k\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(=k^3\right)\)

Pham Duc Loi
27 tháng 8 2016 lúc 11:09

giup minh nha: Tinh nhanh lop 4

42 x 43 - 12 x 9 - 42 x 3

Anh Nguyễn Hà
Xem chi tiết
Đỗ Linh
15 tháng 2 2020 lúc 21:40

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\\ \Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\\ \Rightarrow a=b=c=d\)

Vậy

\(M=\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\\ =\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\\ =\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}\\ =\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\\ =\frac{1+1+1+1}{2}\\ =\frac{4}{2}=2\)

Vậy M=2

Khách vãng lai đã xóa
thảo nguyễn thanh
Xem chi tiết
Đức Phạm
18 tháng 6 2017 lúc 12:15

a,  \(A=\frac{2}{5}+\frac{-1}{6}-\frac{3}{4}-\frac{-2}{3}\)

\(A=\left(\frac{2}{5}-\frac{3}{4}\right)+\left(\frac{-1}{6}-\frac{-2}{3}\right)\)

\(A=\left(\frac{8}{20}-\frac{15}{20}\right)+\left(\frac{-3}{18}-\frac{-12}{18}\right)\)

\(A=\frac{-7}{20}+\frac{1}{2}\)

\(\Rightarrow A=\frac{-7}{20}+\frac{10}{20}=\frac{3}{20}\)

Đức Phạm
18 tháng 6 2017 lúc 12:41

b, \(B=\frac{7}{10}-\frac{-3}{4}+\frac{-5}{6}-\frac{1}{5}+\frac{-2}{3}\)

\(B=\left(\frac{7}{10}-\frac{1}{5}\right)+\left(\frac{-5}{6}+\frac{-2}{3}\right)-\frac{-3}{4}\)

\(B=\left(\frac{7}{10}-\frac{2}{10}\right)+\left(\frac{-5}{6}+\frac{-4}{6}\right)-\frac{-3}{4}\)

\(B=\frac{1}{2}+\frac{-3}{2}-\frac{-3}{4}\)

\(B=\frac{2}{4}+\frac{-6}{4}-\frac{-3}{4}\)

\(\Rightarrow B=\frac{2+-6+3}{4}=\frac{-1}{4}\)

c, \(C=\frac{\left(\frac{1}{2}-0,75\right)\times\left(0,2-\frac{2}{5}\right)}{\frac{5}{9}-1\frac{1}{12}}\)

\(C=\frac{\left(\frac{1}{2}-\frac{3}{4}\right)\times\left(\frac{1}{5}-\frac{2}{5}\right)}{\frac{5}{9}-\frac{1\times12+1}{12}}\)

\(C=\frac{\left(\frac{2}{4}-\frac{3}{4}\right)\times\left(\frac{-1}{5}\right)}{\frac{5}{9}-\frac{13}{12}}\)

\(C=\frac{\left(\frac{-1}{4}\right)\times\left(\frac{-1}{5}\right)}{\frac{60}{108}-\frac{117}{108}}\)

\(C=\frac{\frac{1}{20}}{\frac{-19}{36}}=\frac{1}{20}\div\frac{-19}{36}=\frac{1}{20}\times\frac{36}{-19}\)

\(\Rightarrow C=\frac{36}{-380}=\frac{-9}{95}\)

d, \(D=\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{4}}{-1-\frac{3}{7}+\frac{3}{28}}\)

\(D=\frac{\frac{56}{84}+\frac{24}{84}-\frac{21}{84}}{\frac{-10}{7}+\frac{3}{28}}\)

\(D=\frac{\frac{59}{84}}{\frac{-40}{28}+\frac{2}{28}}=\frac{59}{84}\div\frac{-37}{28}=\frac{59}{84}\times\frac{28}{-37}\)

\(\Rightarrow D=\frac{1652}{-3108}=\frac{-59}{111}\)

PGD-ĐT Tuy An THCS Huỳnh...
3 tháng 8 2017 lúc 19:52

A=3/20

B=-1/4

C=-9/95

D=-59/111

Phương Nguyễn Mai
Xem chi tiết
Phan Thị Hà Vy
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Nguyệt Dạ
10 tháng 8 2019 lúc 21:43

1.

C/m bổ đề: \(a^3-b^3\ge\frac{1}{4}\left(a^3-b^3\right)\) với \(\forall a,b\in R,a\ge b\)

\(\Leftrightarrow4a^3-4b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\ge0\)

\(\Leftrightarrow3a^3+3a^2b-3ab^2-3b^3\ge0\)

\(\Leftrightarrow3\left(a^2-b^2\right)\left(a+b\right)\ge0\)

\(\Leftrightarrow3\left(a+b\right)^2\left(a-b\right)\ge0\)(đúng)

Theo bài ra: \(a^3-b^3\ge3a-3b-4\)

\(\Leftrightarrow\) Cần c/m: \(\left(a-b\right)^3\ge12a-12b-16\)(1)

Thật vậy:

\(\left(1\right)\)\(\Leftrightarrow\left(a-b\right)^3-12\left(a-b\right)+16\ge0\)

\(\Leftrightarrow\left[\left(a-b\right)^3-8\right]-12\left(a-b-2\right)\ge0\)

\(\Leftrightarrow\left(a-b-2\right)\left[\left(a-b\right)^2+2\left(a-b\right)+4\right]-12\left(a-b-2\right)\ge0\)

\(\Leftrightarrow\left(a-b-2\right)\left[\left(a-b\right)^2+2\left(a+b\right)-8\right]\ge0\)

\(\Leftrightarrow\left(a-b-2\right)^2\left(a-b+4\right)\ge0\) (đúng với mọi a,b thỏa mãn \(a,b\in R,a\ge b\))

Nguyệt Dạ
10 tháng 8 2019 lúc 21:54

2.

\(BĐT\Leftrightarrow\frac{1}{\frac{a+b}{ab}}+\frac{1}{\frac{c+d}{cd}}\le\frac{1}{\frac{a+b+c+d}{\left(a+c\right)\left(b+d\right)}}\)

\(\Leftrightarrow\frac{ab}{a+b}+\frac{cd}{c+d}\le\frac{\left(a+c\right)\left(b+d\right)}{a+b+c+d}\)

\(\Leftrightarrow\frac{ab\left(c+d\right)+cd\left(a+b\right)}{\left(a+b\right)\left(c+d\right)}\le\)\(\frac{ab+ad+bc+cd}{a+b+c+d}\)

\(\Leftrightarrow\frac{abc+abd+acd+bcd}{ac+ad+bc+bd}\le\frac{ab+ad+bc+cd}{a+b+c+d}\)

\(\Leftrightarrow\left(ad+ab+bc+cd\right)\left(ac+ad+bc+bd\right)\ge\)\(\left(a+b+c+d\right)\left(abc+abd+acd+bcd\right)\)

\(\Leftrightarrow\left(ad\right)^2-2abcd+\left(bc\right)^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng với mọi a,b,c,d>0)