Với a,b là số chính phương. CMR (a+b) và (a.b) cũng là số chính phương
Chứng minh rằng nếu a,b đều là tổng của 2 số chính phương thì a.b cũng là tổng của 2 số chính phương
a=x²+y², b=m²+n² với x, y, m, n là số tự nhiên khác 0.
Ta có ab=(x²+y²)(m²+n²)=x²m²+x²n²+y²m²+y²n²
=x²m²+y²n²+2xymn+x²n²+y²m²-2xymn
=(xm+yn)²+(xn+ym)² (đpcm)
Chứng minh rằng: Nếu a,b đều là tổng của 2 số chính phương thì a.b cũng là tổng của 2 số chính phương.
Cho (a;b)=1 và a.b=c^2 (c là số nguyên dương) .CMR: a và b là số chính phương
helppppp
Nếu a,b ko là số chính phương thì a,b phải có ít nhất 1 ước nguyên tố chung. Vì nếu a,b không có ước nguyên tố chung mà a,b lại ko là số chính phương thì tích của chúng không thể là số chính phương
Mà đề bài cho (a,b)=1 =>a,b phải là số chính phương
Cho tích a.b là số chính phương và (a,b)=1. Chứng minh rằng a và b đều là số chính phương
cho ƯCLN(a;b)=1 và a.b = c^2 ( c là số nguyên dương). CMR a,b là số chính phương.
Cho tích a.b là số chính phương và (a,b)=1. Chứng minh rằng a,b đều là số chính phương
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
cho tích a.b là số chính phương và (a;b)=1. chứng minh rằng a và b đều là số chính phương.
Giúp mình với mình cần gấp lắm
CMR với mọi số tự nhiên a , tồn tại số tự nhiên b sao cho a.b + 4 là số chính phương.
Đặt a.b + 4 = m2 (m là số tự nhiên)
=> a.b = m2 - 4 = (m - 2).(m+2) => b = (m-2).(m+2)/a
Chọn m = a + 2 => m - 2 = a
=> b = a.(a+4)/a = a+ 4
Vậy với mọi số tự nhiên a luôn tồn tại b = a+ 4 để a.b + 4 là số chính phương
Ta có:
Giả sử: ab + 4 = A2A2
<=> A2A2 - 4 = ab
<=> A2A2 - 2222 = ab
<=> (A+2)(A-2) = ab : luôn đúng với mọi a,b
=> Đpcm
Trần thị Loan b có phải là số tự nhiên đâu mà m-2 hoặc m+2 phải chia hết cho a
Cho tích a.b là số chính phương và (a,b)=1. Chứng minh rằng a và b đều là số chính phương.
Giúp mink nha
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath