Tìm x, y thuộc Z thỏa:
\(y=\frac{x-5}{x^2+14}\)
Tìm x, y thuộc Z thỏa:
\(y=\frac{x-5}{x^2+14}\)
lm nhanh có tick
Để x thuộc Z thì xy thuộc Z
Ta có:
\(xy=\frac{x-5}{x^2+14}.x=\frac{x^2-5x}{x^2+14}=\frac{x^2+14-14-5x}{x^2+14}=\frac{x^2+14}{x^2+14}-\frac{14+5x}{x^2+14}=1-\frac{14+5x}{x^2+14}\)
Để xy nguyên thì \(\frac{14+5x}{x^2+14}\) nguyên
=> 14 + 5x chia hết cho x2 + 14
=> x.(14 + 5x) chia hết cho x2 + 14
=> 14x + 5x2 chia hết cho x2 + 14
=> 5x2 + 70 - 70 + 14x chia hết cho x2 + 14
=> 5.(x2 + 14) - (70 - 14x) chia hết cho x2 + 14
Do 5.(x2 + 14) chia hết cho x2 + 14 => 70 - 14x chia hết cho x2 + 14
=> 5.(70 - 14x) chia hết cho x2 + 14
=> 350 - 70x chia hết cho x2 + 14 (1)
Lại có: 14 + 5x chia hết cho x2 + 14
=> 14.(14 + 5x) chia hết cho x2 + 14
=> 196 + 70x chia hết cho x2 + 14 (2)
Đến đây lấy (1) - (2), tìm ra x thế là dễ r`, hơi dài ók
tìm x,y thuộc z thỏa y=x-5/x^2+14
tìm x,y thuộc Z thỏa mãn \(\frac{x}{2}-\frac{2}{y}=\frac{1}{5}\)
Ta có :
\(\frac{x}{2}-\frac{2}{y}=\frac{1}{5}\)
\(\frac{2}{y}=\frac{x}{2}-\frac{1}{5}\)
\(\frac{2}{y}=\frac{5x}{10}-\frac{2}{10}\)
\(\frac{2}{y}=\frac{5x-2}{10}\)
\(\Rightarrow2.10=y.\left(5x-2\right)\)
\(\Rightarrow20=y.\left(5x-2\right)\)
Lập bảng ta có :
5x-2 | 2 | 10 | -2 | -10 | 4 | 5 | -4 | -5 |
y | 10 | 2 | -10 | -2 | 5 | 4 | -5 | -4 |
x | 4/5 | 12/5 | 0 | -8/5 | 6/5 | 7/5 | -2/5 | -3/5 |
Vậy x = 0 ; y = -10
Tìm x, y thuộc Z:
\(y=\frac{x-5}{x^2+14}\)
Mở điện thoại và cài phần mềm PhotoMath, nó sẽ cho bạn lời giải và đáp án. Nếu thắc mắc cách dùng thì seach google nha.
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
Cho các số tự nhiên x,y,z,t nhỏ nhất thỏa mãn \(\frac{x}{y}=\frac{5}{14},\frac{y}{z}=\frac{21}{28},\frac{z}{t}=\frac{6}{11}\). Tìm x,y,x,t
Giúp mình nha
Cho x,y,z thỏa mãn: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x - 2y + 3z = 14
Tìm: x,y,z
Có: \(\frac{y-2}{3}=\frac{2y-4}{6};\frac{z-3}{4}=\frac{3z-9}{12}\)
\(\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{14-6}{8}=\frac{8}{8}=1\)
Vì \(\frac{x-1}{2}=1\Rightarrow x-1=1.2=2\Rightarrow x=2+1=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3.1=3\Rightarrow y=3+2=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=1.4=4\Rightarrow z=4+3=7\)
Tự kết luận
Bài 2
a) Tìm x biết\(\frac{1}{2}-\left|\frac{5}{4}-2x\right|=\frac{1}{3}\)
b) Tìm x biết \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
c) Tìm ba số x, y, z thỏa mãn: \(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\)và \(x-y+z=78\)
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
c) \(\frac{x}{y}=\frac{10}{9}\Leftrightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{z}=\frac{3}{4}\Leftrightarrow\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{y}{9}=\frac{x}{12}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\). Mà \(x-y+z=78\). Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=6.10=60;y=6.9=54;z=6.12=72\)
Vậy..........
1.Tìm x;y thuộc N : x^3 -7=y^2
2.Tìm p;q thuộc P và x thuộc z thỏa mãn: x^5+px+3q=0
3, Tìm x;y thuộc Z thỏa mãn 6x^3-xy(11x+3y)+2y^3=6