TÌM X
\(\frac{X+1}{2015}+\frac{X+2}{2014}+\frac{X+3}{2013}+\frac{X+4}{2012}=4\)\(4\)
Tìm x biết: \(\frac{x+4}{2012}+\frac{x+3}{2013}+\frac{x+2}{2014}+\frac{x+1}{2015}\)
\(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}\)
\(\Rightarrow\frac{x+4}{2012}+1+\frac{x+3}{2013}+1=\frac{x+2}{2014}+1+\frac{x+1}{2015}+1\)
\(\Rightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
\(\Rightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}-\left(\frac{x+2016}{2014}+\frac{x+2016}{2015}\right)=0\)
\(\Rightarrow\left(x+2016\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\ne0\)
\(\Rightarrow x+2016=0\)
\(\Rightarrow x=-2016\)
Tìm x biết
\(\frac{x-1}{2015}+\frac{x-2}{2014}-\frac{x-3}{2013}=\frac{x-4}{2012}\)
CÓ: \(\frac{x-1}{2015}+\frac{x-2}{2014}-\frac{x-3}{2013}-\frac{x-4}{2012}=0\)\(0\)
<=>\(\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)-\left(\frac{x-3}{2013}-1\right)-\left(\frac{x-4}{2012}-1\right)=0\)
<=>\(\frac{x-2016}{2015}+\frac{x-2016}{2014}-\frac{x-2016}{2013}-\frac{x-2016}{2012}=0\)
<=>\(\left(x-2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
Do:\(\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)\ne0\)
=>\(x-2016=0\)
<=>\(x=2016\)
Tìm x biết: \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}\) = -4
tìm x
\(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}\)
=> \(\left(\frac{x+4}{2012}+1\right)+\left(\frac{x+3}{2013}+1\right)=\left(\frac{x+2}{2014}+1\right)+\left(\frac{x+1}{2015}+1\right)\)
=> \(\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
=> \(\frac{x+2016}{2012}+\frac{x+2016}{2013}-\frac{x+2016}{2014}-\frac{x+2016}{2015}=0\)
=> \(\left(x+2016\right).\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
=> x + 2016 = 0 ( Vì \(\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\ne0\)
=> x = -2016
\(\Rightarrow\frac{x+4}{2012}+1+\frac{x+3}{2013}+1=\frac{x+2}{2014}+1+\frac{x+1}{2015}+1\)
\(\Leftrightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
\(\Leftrightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}-\frac{x+2016}{2014}-\frac{x+2016}{2015}=0\)
\(\Leftrightarrow\left(x+2006\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
\(\Rightarrow x+6=0\) ( vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\) khac 0 )
=> x = -6
tìm x, biết:
\(\frac{x-1}{2015}+\frac{x-2}{2014}-\frac{x-3}{2013}=\frac{x-4}{2012}\)
Tìm x biết:
\(\frac{x+5}{2012}+\frac{x+4}{2013}=\frac{x+3}{2014}+\frac{x+2}{2015}\)
\(\frac{x+5}{2012}+\frac{x+4}{2013}=\frac{x+3}{2014}+\frac{x+2}{2015}\)
\(\Leftrightarrow\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)
\(\frac{x+5+2012}{2012}+\frac{x+4+2013}{2013}=\frac{x+3+2014}{2014}+\frac{x+2+2015}{2015}\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}=\frac{x+2017}{2014}+\frac{x+2017}{2015}\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)
\(\left(x+2017\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
Mà \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}>0\)
\(\Rightarrow x+2017=0\)
\(\Rightarrow x=-2017\)
\(\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)
\(\left(x+2017\right)\cdot\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\)
Vì \(\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\ne0\)
suy ra \(x+2017=0\)
suy ra \(x=-2017\)
Vậy \(x=-2017\)
Ta có:
\(\frac{x+5}{2012}+\frac{x+4}{2013}=\frac{x+3}{2014}+\frac{x+2}{2015}\)
\(\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)
\(\frac{x+5}{2012}+\frac{2012}{2012}+\frac{x+4}{2013}+\frac{2013}{2013}=\frac{x+3}{2014}+\frac{2014}{2014}+\frac{x+2}{2015}+\frac{2015}{2015}\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}=\frac{x+2017}{2014}+\frac{x+2017}{2015}\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)
\(\left(x+2017\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
\(=>\orbr{\begin{cases}x+2017=0\\\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}=0\end{cases}}\)
Mà: \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}>0\)
=> x + 2017 = 0 => x = -2017
\(\frac{x}{2012}+\frac{x-1}{2013}+\frac{x-2}{2014}-\frac{x-3}{2015}=\frac{x-4}{1008}\)
\(\frac{x}{2012}+\frac{x-1}{2013}+\frac{x-2}{2014}-\frac{x-3}{2015}=\frac{x-4}{1008}\)
\(\Leftrightarrow\left(\frac{x}{2012}+1\right)+\left(\frac{x-1}{2013}+1\right)+\left(\frac{x-2}{2014}+1\right)-\left(\frac{x-3}{2015}+1\right)=\frac{x-4}{1008}+2\)
\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}=\frac{x-4+1008.2}{1008}\)
\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}=\frac{x+2012}{1008}\)
\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}-\frac{x+2012}{1008}=0\)
\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{1008}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{1008}\ne0\)
\(\Rightarrow x+2012=0\)\(\Leftrightarrow x=-2012\)
Vậy \(x=-2012\)
Chu Công Đứcbạn làm kết quả đúng nhưng trình bày sai rồi vế phải bạn cộng 2 nhưng vế trái bạn cộng 4???
Nhưng nếu vế phải +2 thì kết quả có thay đổi ko vậy ạ
\(\frac{x-1}{2015}+\frac{x-2}{2014}-\frac{x-3}{2013}-\frac{x-4}{2012}=0\)
=\(\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)-\left(\frac{x-3}{2013}-1\right)-\left(\frac{x-4}{2012}-1\right)\)
=\(\frac{x-2016}{2015}+\frac{x-2016}{2014}-\frac{x-2106}{2013}-\frac{x-2016}{2012}\)
=\(\left(x-2016\right).\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)\)
Mà: \(\frac{1}{2012}>\frac{1}{2015}\) và \(\frac{1}{2014}< \frac{1}{2013}\)
=>\(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\) khác \(0\)
Nên: \(x-2016=0\)
=>\(x=2016\)
Tập hợp các giá trị x thõa mãn \(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+4}{2012}\)