\(\frac{1+2+2^2+.....+2^{2012}}{20^{14}-2}\)
Rút gọn :
a/ \(A=\frac{\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}\)
b/ \(B=\frac{\left(1+\frac{2012}{1}\right)\left(1+\frac{2012}{2}\right)...\left(1+\frac{2012}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)...\left(1+\frac{1000}{2012}\right)}\)
\(S=\sqrt{1+2010^2+\frac{2010^2}{2011^2}}+\frac{2010}{2011}+\sqrt{1+2011^2+\frac{2011^2}{2012^2}}+\frac{2011}{2012}+\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
bai 1:tính nhanh : P=\(\frac{\frac{2}{3}-\frac{1}{4}+\frac{5}{11}}{\frac{5}{12}+1-\frac{7}{11}}\)
Bai 2:Thực hiện phép tính: 1-2+3-4+5-6+...+2011-2012
Bai 3:so sánh:A=\(\frac{2011+2012}{2012+2013}\)
B=\(\frac{2011}{2012}+\frac{2012}{2013}\)
bai4:so sánh:A=\(\frac{20^{10}+1}{20^{10}-1}\)
B=\(\frac{20^{10}-1}{20^{10}-3}\)
Bài 2:1-2+3-4+...+2011-2012
=1+2+3+4+...+2011+2012-2(2+4+6+...+2012)
=2025078-2(1012036)
=2025078-2024072
=1006
Học giỏi!
Rút gọn:
A =\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
B = \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
So sánh :
\(A=\frac{20^{10}+1}{20^{10}-1}vàB=\frac{20^{10}-1}{20^{10}-3}\)
Tinh cach bieu thuc sau
A=2+4-6-8+10+12-14-16+....+210+214-216-218
B=\(2^{2013}-2^{2012}-2^{2011}-2^{2010}-...-2-1\)
C=\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
Số số hạng của A :
( 218 - 2 ) : 2 + 1 = 109
A = 2 + 4 - 6 - 8 + 10 + 12 - 14 - 16 + .... + 210 + 214 - 216 - 218
A = 2 - 6 + 4 - 8 + 10 - 14 + 12 - 16 + ... + 210 - 216 + 214 - 218
Đến đây bạn xem lại đề giùm mình , hiện tại đang ghép nhóm sao cho hiệu mỗi nhóm là -4 ( ghép đôi ) . Mà 109 ko chia hết cho 2
4 số cuối cùng 210 , 214 , 216 , 218 đã đủ cặp và ko hề dư ra số nào
????
Tìm x biết:
a) \(^{2^x+2^{x+1}+2^{x+2}+2^{x+3}=480}\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right).x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{2}{2011}+\frac{1}{2012}\)
a)
\(2^x\left(1+2+2^2+2^3\right)=480\)
\(2^x.15=480\Rightarrow2^x=\frac{480}{15}=32=2^5\Rightarrow x=5\)
Chính Xác 100% là X=5
k cho mink nhé các pạn
Tính \(\sqrt{1^3+2^3+....+2011^3+2012^3}\)
Cho đa thức P(x) = \(\frac{1}{x^2+x}+\frac{1}{x2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\)Tính P(0,9)
Tìm x biết:
a) \(^{2^x+2^{x+1}+2^{x+2}+2^{x+3}=480}\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right).x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{2}{2011}+\frac{1}{2012}\)
\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
\(\Rightarrow2^x\cdot1+2^x\cdot2^1+2^x\cdot2^2+2^x\cdot2^3=480\)
\(\Rightarrow2^x\left(1+2^1+2^2+2^3\right)=480\)
\(\Rightarrow2^x\cdot15=480\)
\(\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\frac{2012}{1}+\frac{2011}{2}+...+\frac{2}{2011}+\frac{1}{2012}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\left(\frac{2011}{2}+1\right)+...+\left(\frac{2}{2011}+1\right)+\left(\frac{1}{2012}+1\right)+1\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\frac{2013}{2}+...+\frac{2013}{2011}+\frac{2013}{2012}+\frac{2013}{2013}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=2013\left(\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}\right)\)
\(\Rightarrow x=2013.\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}}\)
\(\Rightarrow x=2013\)
Vậy \(x=2013\)
Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)
Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
Hãy so sánh S và \(\frac{1}{2}\)
Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)
S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)
Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng A>1
Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Bài 6: Chứng tỏ rằng
D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1
Bài 7:
C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)
Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm
Trần Quốc An: Em hãy tách bài ra để dễ trả lời hơn nhé. Em gửi từng bài đi để cô hướng dẫn :)