Chứng minh có n(n-1)(n-2)/6 số có 3 chữ số 1 và các số còn lại đều là 0( biết số đó < 10^n)
a, với n là số tự nhiên chẵn , chứng minh: (20n+16n-3n-1) chia hết cho 323
b,Tìm số x có chữ số tận cùng bằng 2, biết rằng x ,2x ,3x đều là các số có 3 chữ số và 9 chữ số của 3 số đó đều khác nhau và khác 0
a, Với n là số tự nhiên chẵn, chứng minh: (20n + 16n - 3n - 1) chia hết cho 323.
b, Tìm số x có chữ số tận cùng bằng 2, biết rằng x, 2x, 3x đều là các số có 3 chữ số và 9 chữ số của 3 số đó đều khác nhau và khác 0.
a.với n là số tự nhiên chẵn,chứng minh:(20^n+16^n-3^n-1)chia hết cho 3
b.tìm số x có chữ số tận cùng bằng 2,biết rằng x,2x,3x đều là các số có 3chữ số vào 9 chữ số của 3 chữ số đó đều khác nhau vào khác 0
1. Chứng minh rằng tổng các số ghi trên vé xổ số có 6 chữ số mà tổng 3 chữ số đầu bằng tổng 3 chữ số cuối thì chia hết cho 13 ( các chữ số đầu có thể bằng không )
2. Tìm số abcd biết rằng số đó chia hết cho tích ab và cd
3. Chứng minh rằng trong tất cả các số tự nhiên khác nhau có 7 chữ số lập bởi cả 7 chữ số 1, 2, 3, 4, 5, 6, 7, không có 2 số nào mà một số chia hết chosố còn lại.
4. Cho 3 số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước d đơn vị. Chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.
5. Hãy viết số 100 dưới dạng tổng các số lẽ lien tiếp.
6. Tìm số tự nhiên có 3 chữ số, biết rằng nó tăng gấp n lần nếu cộng mỗi chữ số của nó với n ( n là số tự nhiên, có thể gồm một hoặc nhiều chữ số ).
7. Tìm số tự nhiên x có chữ số tận cùng bằng 2, biết rằng x, 2x, 3x đều là các số có 3 chữ số và 9 chữ số của 3 số đó đều khác nhau và khác không.
8. Tìm số tự nhiên x có 6 chữ số, biết rằng các tích 2x, 3x, 4x, 5x, 6x cũng là số có 6 chữ số gồm cả 6 chữ số ấy.a. Cho biết 6 chữ số của số phải tìm là 1, 2, 4, 5, 7, 8.b. Giải bài toán nếu không cho điều kiện a.
9. Tìm số tự nhiên n lớn nhất để tích các số tự nhiên từ 1 đến 1000 chia hết cho 5n
Xem nội dung đầy đủ tại:http://123doc.org/document/2674306-tuyen-chon-toan-nang-cao-va-phat-trien-lop-6.htm
Câu 1 ;
a, với n là số tự nhiên chẵn, chứng minh ( 20n + 16n - 3n - 1 ) chia hết cho 323
b, tìm x có tận cùng bằng 2 biết rằng x, 2x, 3x đều là các số có 3 chữ số và 9 chữ số của 3 số đều khác nhau và khác 0
Câu b ko biết
câu a:
20^n+16^n-3^n-1=(20^n-1^n)+(16^n-3^n)=(20-1)k+(256^x-9^x) (n=2x)
=19k+247x=19(k+13x) chia hết cho 19
20^n+16^n-3^n-1=(20^n-3^n)+(16^n-1)=(20-3)f+(256^x-1^x)=17f+(256-1)x
=17f+255x=17(x+15x) chia hết cho 17
=>20^n+16^n-3^n-1 chia hết cho 17;19
=> 20^n+16^n-3^n-1 chia hết cho 323
=>ĐPCM neeys đúng cho tớ **** nha!
Cảm ơn cậu nhưng cố giúp tớ câu b lun đi!
Câu 1 ;
a, với n là số tự nhiên chẵn, chứng minh ( 20n + 16n - 3n - 1 ) chia hết cho 323
b, tìm x có tận cùng bằng 2 biết rằng x, 2x, 3x đều là các số có 3 chữ số và 9 chữ số của 3 số đều khác nhau và khác 0
vi n la so tu nhien chan nen gia su n=0=> (20^0+16^0-3^0-1) chia het cho 323
gia su n =2 => (20^2+16^2-3^2-1) chiaa het cho 323
tu nhung dieu tren nen voi moi n la so tu nhien chan thi (20^n+16^n-3^n-1)chia het cho 323
Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôn
có 2 số chia hết cho nhau.
Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bất
kì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?
Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48 số 0 theo thứ tự 1; 0; 1; 0; 0; · · · ; 0. Mỗi phép biến đổi, ta
thay một 2 cặp 2 số liền nhau bất kì (x; y) bởi (x + 1; y + 1). Hỏi nếu ta lặp lại thao tác trên thì có thể đến 1
lúc nào đó thu được 50 số giống nhau hay không?
Bài 5. Trên đường tròn lấy theo thứ tự 12 điểm A1; A2; A3; · · · ; A12. Tại điểm A1 ta viết số -1, tại các đỉnh
còn lại ta viết số 1. Ở mỗi bước, chọn 6 điểm kề nhau bất kì và đổi dấu tất cả các số tại các điểm đó. Hỏi nếu
ta lặp lại thao tác trên thì có thể đến 1 lúc nào đó thu được trạng thái: điểm A2 viết số -1, các đỉnh còn lại
viết số 1, hay không?
Bài 6. Kí hiệu S(n) là tổng các chữ số của n. Tìm n, biết:
a) n + S(n) + S(S(n)) = 2019.
b) n + S(n) + S(S(n)) = 2020.
Bài 7. Giả sử (a1; a2; a3; · · · ; an) là 1 hoán vị của (1; 2; 3; · · · ; n) (là các số 1; 2; 3; · · · ; n nhưng viết theo
thứ tự tùy ý). Chứng minh rằng nếu n lẻ thì số P = (a1 - 1)(a2 - 2)(a3 - 3) · · · (an - n) là số chẵn.
Bài 8. Trên bàn có 6 viên sỏi, được chia thành vài đống nhỏ. Mỗi phép biến đổi được thực hiện như sau: ta
lấy ở mỗi đống 1 viên và lập thành đống mới. Hỏi sau 69 bước biến đổi như trên, các viên sỏi trên bàn được
chia thành mấy đống?
Bài 9. Xung quanh công viên người ta trồng n cây, giả sử trên mỗi cây có 1 con chim. Ở mỗi lượt, có 2 con
chim đồng thời bay sang cây bên cạnh theo hướng ngược nhau.
a) Với n lẻ, chứng tỏ rằng có thể có cách để tất cả các con chim cùng đậu trên một cây.
b) Chứng minh điều ngược lại với n chẵn.
AA)Vớ n là số tự nhiên chẵn.CMR (20n+16n-3n-1) chia hết cho 323.BB)tìm x có chư số tận cùng bằng 2 biết x,2x,3x đều là các số có 3 chữ số và 9 chữ số của 3 số đó đều khác nhau và khác 0
Đặt (20n+16n-3n-1)= A
Để làm được bài này em cần chứng minh cho A phải lần lượt chia hết cho 17 và 19 vì 19.17=323
BĐ A =(16n-1)+(20n-3n)Có (16n-1) chia hết cho 17 (1) (20n-3n) chia hết cho 17 (2)Từ (1), (2) suy ra A chia hết cho 17 (O)
BĐ A = (16n-3n)+(20n-1)Có (16n-3n) chia hết cho 19(3) (20n-1) chia hết cho 19 (4)Từ (3), (4) suy ra A chia hết cho 19 (K)
Từ (O) , (K) suy ra A chia hết cho 323 <DPCM>
Có j ko hiểu ib qua facebook nha face của mik là Ngụy Vô Tiện nha