Cho tam giác AB, các đường cao tương ứng với a, b, c theo thứ tự là ha, hb, hc
Chứng minh rắng : nếu \(\frac{1}{h^2a}=\frac{1}{h^2b}+\frac{1}{h^2c}\)
thì tam giác ABC là tam giác vuông
Cho tam giác ABC, các đường cao tương ứng với các cạnh a, b, c theo thứ tự là ha, hb, hc
Chứng minh rằng :nếu \(\frac{1}{ha^2}=\frac{1}{hb^2}+\frac{1}{hc^2}\)
thì tam giác ABC là tam giác vuông
Vẽ tam giác ABC với các chiều cao tương ứng là AH, BK, CG.
Ta có \(\Delta AHC\sim\Delta BKC\left(g-g\right)\Rightarrow\frac{AH}{BK}=\frac{AC}{BC}\Rightarrow\left(\frac{AH}{BK}\right)^2=\left(\frac{AC}{BC}\right)^2=\frac{AC^2}{BC^2}\)
Tương tự \(\Delta AHB\sim\Delta CGB\left(g-g\right)\Rightarrow\frac{AH}{CG}=\frac{AB}{BC}\Rightarrow\left(\frac{AH}{CG}\right)^2=\left(\frac{AB}{BC}\right)^2=\frac{AB^2}{BC^2}\)
Ta có \(\frac{1}{AH^2}=\frac{1}{BK^2}+\frac{1}{CG^2}\Leftrightarrow\frac{AH^2}{BK^2}+\frac{AH^2}{CG^2}=1\Leftrightarrow\frac{AB^2}{BC^2}+\frac{AC^2}{BC^2}=1\Leftrightarrow\frac{AB^2+AC^2}{BC^2}=1\)
\(\Leftrightarrow AB^2+AC^2=BC^2\Leftrightarrow\) tam giác ABC vuông tại A.
Cho tam giác ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H.
a)CMR:
Tam giác AEF đồng dạng với tam giác ABC. \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b)CMR:\(S_{DÈF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right)S_{ABC}\)
c)Cho biết AH=k.HD. CMR: \(\tan B.\tan C=k+1\)
d)CMR:\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)
Cho tam giác ABC , AB =c , BC=a , CA =b và vẽ đường cao tường ứng với 3 cạnh là hc , hb , ha . Gọi r là khoảng cách từ giao điểm 3 đường phân giác đến 3 cạnh tam giác
Chứng minh \(\frac{1}{ha}+\frac{1}{hb}+\frac{1}{hc}=\frac{1}{r}\)
Tam giác ABC 3 cạnh là a,b,c ( độ dài) và 3 chiều cao tương ứng là ha, hb ,hc. Từ điểm O bất kì năm bên trong tam giác hạ các dường thẳng có độ dài tương ứng là x, y, z vuông góc với 3 cạnh của tam giác ABC.
CMR: \(\frac{x}{ha}+\frac{y}{hb}+\frac{z}{hc}=1\)
Cho tam giác ABC có 3 đường cao tương ứng là AA' ,BB' , CC' cắt nhau tại H. Chứng minh rằng \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\) = 1
Ta có : \(\frac{HA'}{AA'}=\frac{S_{HBC}}{S_{ABC}};\frac{HB'}{AB'}=\frac{S_{HAC}}{S_{ABC}};\frac{HC'}{AC'}=\frac{S_{HAB}}{S_{ABC}}\)
nên \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S_{HBC}+S_{HAB}+S_{HAC}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Vậy \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi
cho tam giác ABC (AB<AC),dường cao AK.Gọi D,E,F lần lượt là trung điểm cr AB,AC,BC
a)tg BEDF là hình gì?
b)chứng minh tứ giác DEKF là hình thang cân
c)gọi H lak trực tâm cr tg ABC ,M,N,P theo thứ tự trung điểm của HA,HB,HC
Chứng minh các đoạn MF,NE,PD bằng nhau và cắt nhau tại trung điểm mỗi đoạn
(giúp mik với đg cần gấp)
TK
a) Xét ΔABC có
D là trung điểm của AB(gt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇔DE//BC và DE=BC2DE=BC2(Định lí 2 về đường trung bình của tam giác)
mà BF=FC=BC2BF=FC=BC2(F là trung điểm của BC)
nên DE=BF=FC
Xét tứ giác DEFB có DE//BF(DE//BC, F∈BC) và DE=BF(cmt)
Cho tam giác có 3 cạnh là a;b;c và 3 đường cao tương ứng là ha; hb ; hc .Từ điểm O bất kì trong tam giác hạ các đoạn thẳng có độ dài x;y;z vuông góc với 3 cạnh của tam giác CMR
\(\frac{x}{ha}+\frac{y}{hb}+\frac{z}{hc}\)=1
Cho tam giác ABC có 3 góc nhọn với đường cao AD,BE,CF cắt nhau tại H
a, Cmr : \(\Delta AEF\sim\Delta ABC;\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b, Cmr : \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cmr :\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge3\)
a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)
SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))
b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC
=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC
cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm
a) tính \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b) Gọi AI là phân giác của tam giác ABC;IM,IN thứ tự là phân giác của góc AIC và góc AIB.CMR: AN*BI*IC=BN*IC*AM
C)CMR đường thẳng DF luôn di qua 1 điểm cố định khi điểm M di động trên đoạn thẳng Ab
Ban vao trang nay:Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi