Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng thị huyền trang
Xem chi tiết
alibaba nguyễn
10 tháng 1 2019 lúc 13:29

a/ \(P=\frac{1}{\sqrt{xy}}\)

b/ \(x^3=8-6x\)

\(\Rightarrow P=\frac{1}{\sqrt{x\left(x^2+6\right)}}=\frac{1}{\sqrt{x^3+6x}}=\frac{1}{\sqrt{8-6x+6x}}=\frac{1}{2\sqrt{2}}\)

Huong Phan
Xem chi tiết
Oanh Kim
Xem chi tiết
Nguyễn Hương Ly
Xem chi tiết
NGUUYỄN NGỌC MINH
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Hoàng Lê Bảo Ngọc
22 tháng 10 2016 lúc 20:14

a/ Bạn tự tìm ĐKXĐ

\(A=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{x}\left(\sqrt{y}+1\right)}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{x}\left(\sqrt{y}+1\right)}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)

Xét 

\(=\frac{\left(\sqrt{x}+1\right)\left(1-\sqrt{xy}\right)+\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\)

\(=\frac{\sqrt{x}-x\sqrt{y}+1-\sqrt{xy}+xy+\sqrt{xy}+x\sqrt{y}+\sqrt{x}+1-xy}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\)

\(=\frac{2\sqrt{x}+2}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\)

\(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\)

\(=\frac{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{xy}+\sqrt{x}\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\)

\(=\frac{xy-1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}-x\sqrt{y}+\sqrt{x}-\sqrt{xy}+1}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\)

\(=\frac{-2\sqrt{xy}-2x\sqrt{y}}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}=\frac{-2\sqrt{xy}\left(\sqrt{x}+1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\)

\(\Rightarrow A=\frac{2\left(\sqrt{x}+1\right)}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}:\frac{2\sqrt{xy}\left(\sqrt{x}+1\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}=\frac{1}{\sqrt{xy}}\)

b/ Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\) với \(a=\frac{1}{\sqrt{x}},b=\frac{1}{\sqrt{y}}\) được : 

\(A=\frac{1}{\sqrt{x}.\sqrt{y}}\le\frac{1}{4}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2=\frac{1}{4}.6^2=9\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x}=\sqrt{y}\\\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\end{cases}}\Leftrightarrow x=y=\frac{1}{9}\)

Vậy ........................................................

Mai Ngọc
Xem chi tiết
Dark Killer
Xem chi tiết
Quốc Sơn
Xem chi tiết
Mỹ Trâm
22 tháng 6 2019 lúc 10:20

Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html