Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Hải Đăng
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
That Duck
Xem chi tiết
Sắc màu
Xem chi tiết
Đỗ Đức Hà
Xem chi tiết
Xem chi tiết
LƯU BÌNH NGUYÊN
Xem chi tiết

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4^2+3^2=25\)

=>BC=5(cm)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

c: Sửa đề: ΔBHC đều

Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔBEH vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBH}\) chung

Do đó: ΔBEH=ΔBAC

=>BH=BC

Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)

nên ΔBHC đều

Seng Long
Xem chi tiết

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4^2+3^2=25\)

=>BC=5(cm)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

c: Sửa đề: ΔBHC đều

Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔBEH vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBH}\) chung

Do đó: ΔBEH=ΔBAC

=>BH=BC

Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)

nên ΔBHC đều

Tran bang
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
28 tháng 3 2020 lúc 15:37

Ta có : tam giác AMH = tam giác AMK 

=> AH = AK 

Xét tam giác AHI và tam giác AKI có : 

AH = AK 

góc HAI = góc IAK ( vì AI là phương giác ) 

AI chung 

=> tam giác AHI = tam giác AKI 

=> góc AHI = góc AKI = 180 độ / 2 = 90 độ 

và HI = IK  = HK/ 2 = 6/2 = 3 

Xét tam giác vuông  AIK  vuông tại I có  : 

AI = \(\sqrt{AK^2-IK^2}=\sqrt{5^2-3^2}=4\)

=> AI = 4 cm

Khách vãng lai đã xóa
Chủ acc bị dính lời nguy...
28 tháng 3 2020 lúc 15:57

Ta có hình vẽ:

A B C M H K

(Ảnh ko chuẩn lắm)

Vì \(\Delta ABC\)cân tại A nên AM vừa là tia phân giác, vừa là đường cao của \(\Delta ABC\)

=> MB=MC(t/chất của đường cao trong tam giác cân, tự chứng minh nhé)

Xét \(\Delta MBH\)và \(\Delta MCK:\)

BM=CM(cmt)

\(\widehat{HBM}=\widehat{KCM}\)\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)

=> HB=KC( 2 cạnh tương ứng)

Mà AB=AC => AH=AK

Xét \(\Delta AHI\)và \(\Delta AKI:\)

AH=AK (cmt)

AI: cạnh chung

\(\widehat{HAI}=\widehat{KAI}\)(gt)

\(\Rightarrow\Delta AHI=\Delta AKI\left(c-g-c\right)\)

=> HI=IK(2 cạnh tương ứng)

\(\Rightarrow IK=\frac{HK}{2}=\frac{6}{2}=3cm\)

Lại có: AH=AK => \(\Delta AHK\)cân tại A

=> AI là đường cao của \(\Delta AHK\)

Xét \(\Delta AIK\)vuông tại I có:

Áp dụng định lý Py- ta-go, ta có:

AI2+IK2=AK2

=> AI2=AK2-IK2

=> AI2=52-32

=> AI2=16

=> AI=4cm

Vậy AI=4cm

Khách vãng lai đã xóa