Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. CMR CA là tia phân giác của góc C.
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. CMR CA là tia phân giác của góc C.
Giải chi tiết
Vì hình thang ABCD cân => AB // CD => góc DAC= góc BAC
Xét tam giác ADC và tam giác CAB
Ta có: AB=AD (gt), góc DAC=BAC(cmt), AD=BC(hình thang ABC cân)
=> tam giác ADC=tam giác CAB(c-g-c)
=> góc BCA= góc DCA ( 2 góc t.ứng)
=> AC là tia p/g của góc C
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh rằng CA là tia phân giác của góc C.
Ta có:
AB = AD (gt)
AD = BC (tính chất hình thang cân)
⇒ AB = BC do đó ΔABC cân tại B
⇒ ∠ BAC = ∠ BCA (tính chất tam giác cân) (*)
ABCD là hình thang có đáy là AB nên AB // CD
∠ BAC = ∠ DCA (hai góc so le trong) (**)
Từ (*) và (**) suy ra: ∠ BCA = ∠ DCA (cùng bằng ∠ BAC)
Vậy CA là tia phân giác của ∠ BCD.
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. C/m: CA là tia phân giác của góc C
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh rằng CA là tia phân giác của góc C ?
Ta có: \(AB = AD\)
Mà \(AD = BC\) (ABCD là hình thang cân)
\(\Rightarrow AB=BC\)
Nối A và C
Ta có: \(AB=BC\Rightarrow\Delta ABC\) là \(\Delta\) cân \(\Rightarrow\widehat{BAC}=\widehat{BCA}\) (1)
Ta lại có: AB // CD (ABCD là hình tang cân)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\) ( cặp góc so le trong) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BCA}=\widehat{ACD}\Rightarrow CA\) là phân giác của \(\widehat{C}\) (ĐPCM)
: Hình thang cân ABCD, đáy nhỏ AB bằng cạnh bên AD. Chứng minh CA là tia phân giác góc C.
Ta có: AB=AD
mà AD=BC
nên BA=BC
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{BCA}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD.chứng minh rằng CA là tia phân giác của góc C
vì ABCD là hình thang cân nên ta có AD=BC(hai cạnh bên)
mà theo bài ra AB=AD => AB=AD=BC
=> tam giác ABC cân tại B => góc BAC= góc BCA(hai góc đáy)
mặt khác ta có góc BAC = góc ACD ( so le trong)
=> góc BCA = góc ADC => CA là tia phân giác góc C
Cau1: Cho hình thang cân ABCD có AB//CD. Gọi O là giao điểm của hai đường chéo, I là giao điểm của AD, BC. Chứng minh OI là trung trực của CD.
Câu2: Cho hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh CA là tia phân giác góc C.
2)
Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)
\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)
Mà AB // ED (gt)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)
=> CA là tia phân giác của góc C.
hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh rằng CA là tia phân giác của góc C
mình cần ngay các bạn giúp mình với nhé !!!!!
cho hình thang cân ABCD có đáy nhỏ AB= cạnh bên AD. Chứng minh rằng CA là tia phân giác của góc C. Ai giúp mình giải bài này nha
hình hơi xấu với lại chưa cân bạn thông cảm nha
do AB =AD mà BC = AD nên BC = AB => tam giác ABC cân tại B => góc BAC = góc BCA (1)
do ABCD là hình thang nên góc BAC =góc ACD (2)
Từ (1) và (2) => góc BCA =góc ACD => CA là tia phân giác của góc BCD => đpcm