Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thanh Minh
Xem chi tiết
Nguyễn Lê Phúc Thắng
Xem chi tiết
Trần Quang Hiếu
Xem chi tiết
Hồng Trinh
19 tháng 5 2016 lúc 11:29

\(A=\frac{1}{2}\times\frac{3}{4}......\frac{9999}{10000}\)

Đặt : \(B=\frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}.......\frac{10000}{10001}\)

Vì \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};.....\frac{9999}{10000}< \frac{10000}{10001}\)

Nên A<B  mà A>0; B>0

\(\Rightarrow A^2< A\times B=\left(\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}.....\frac{9999}{10000}\right)\times\left(\frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}......\frac{10000}{10001}\right)\)\(=\frac{1}{2}\times\frac{2}{3}\times\frac{4}{5}......\frac{9999}{10000}\times\frac{10000}{10001}\)\(=\frac{1}{10001}< \frac{1}{10000}=\frac{1}{100^2}=0.01^2\)\(\Rightarrow A^2< 0.01^2\)hay A < 0.01

 

Trần Hoài Ngọc
Xem chi tiết
TẠ VĂN MINH
Xem chi tiết
Tâm Vũ
7 tháng 4 2016 lúc 20:39

A<2/3*4/5*6/7...10000/10001

A^2<A*(2/3*4/5*6/7...10000/10001)

A^2<\(\frac{1\cdot2\cdot3\cdot4\cdot5\cdot6...9999\cdot10000}{2\cdot3\cdot4\cdot5\cdot6\cdot7...10000\cdot10001}\)

A^2<1/10001

0,01=1/100

1/100^2=1/10000

A^2<1/10001<1/10000

Nguyễn Mai Hương
Xem chi tiết
TBQT
8 tháng 8 2018 lúc 15:20

Đặt A = \(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{9998}{9999}.\frac{10000}{10000}\)

Rõ ràng A < A'

=> A2 < A . A' \(=\frac{1}{10000}=\frac{1}{100^2}\)

Nên A < 0,01

Son Goku
Xem chi tiết
nguyen duc thang
13 tháng 1 2018 lúc 8:51

Giả sử [(1+2+3+.......+n)-7] chia hết cho 10

=>[(1+2+3+.......+n)-7= \(\frac{n.\left(n+1\right)}{2}\)- 7 \(⋮\)10

=> \(\frac{n.\left(n+1\right)}{2}\)có tận cùng là 7

Nhưng \(\frac{n.\left(n+1\right)}{2}\)chỉ có tận cùng là : 5 ; 2 ; 3 ; 4 ; 0 , không có tận cùng là 7 nên giả thiết trên là sai

Vậy [ ( 1 + 2 + 3 + ... + n ) - 7 ] không chia hết cho 10 với mọi n thuộc N

Lưu Nho
Xem chi tiết
nguyen thu phuong
16 tháng 2 2018 lúc 20:09

Ta có: \(0,01=\frac{1}{100}\)

Mà \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)

Ta thấy: \(\frac{1}{100}=\frac{100}{10000}\)

Vì \(\frac{9999}{10000}>\frac{100}{10000}hay\frac{9999}{10000}>\frac{1}{100}\)

Nên \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}>\frac{1}{100}hay\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}>0,01\)

Vậy \(A>0,01\)

Sakura Akari
27 tháng 7 2018 lúc 14:49

Ta có: \(0,01=\frac{1}{100}\)

Đặt  \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{10000}{10001}\)

Xét  \(AB=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{10000}{10001}\)

\(\Leftrightarrow\)\(AB=\frac{1.2.3.4.5.6.....9999.10000}{2.3.4.5.6.7.....10000.10001}\)

\(\Leftrightarrow\)\(AB=\frac{1}{10001}\)

​Vì A < B

\(\Rightarrow\)A2 < AB

\(\Rightarrow A^2< \frac{1}{10001}< \frac{1}{10000}\)

\(\Rightarrow A< \frac{1}{100}hayA< 0,01\)

Vậy A < 0,01

letienluc
Xem chi tiết
Lê Minh Long
5 tháng 10 2016 lúc 22:05

Mai lên lop tao giai cho 

Nguyễn Văn Trung Anh
20 tháng 3 2017 lúc 16:18

Cách giải là:Đếu biết

sdsada sdsdsadsa
20 tháng 3 2017 lúc 16:46

< k nha