cho A =1/2 . 3/4 .5/6 ....... 9999/10000
so sánh với 0,01
So sánh A = 1/2 + 3/4 + 5/6 + ...+ 9999/10000 với 0,01
So sánh 1/2 . 3/4 .5/6 ... 9999/10000 với 0,01.Help!!?
bài 17: Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}..........\frac{9999}{10000}.\)Hãy so sánh A với 0,01
\(A=\frac{1}{2}\times\frac{3}{4}......\frac{9999}{10000}\)
Đặt : \(B=\frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}.......\frac{10000}{10001}\)
Vì \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};.....\frac{9999}{10000}< \frac{10000}{10001}\)
Nên A<B mà A>0; B>0
\(\Rightarrow A^2< A\times B=\left(\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}.....\frac{9999}{10000}\right)\times\left(\frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}......\frac{10000}{10001}\right)\)\(=\frac{1}{2}\times\frac{2}{3}\times\frac{4}{5}......\frac{9999}{10000}\times\frac{10000}{10001}\)\(=\frac{1}{10001}< \frac{1}{10000}=\frac{1}{100^2}=0.01^2\)\(\Rightarrow A^2< 0.01^2\)hay A < 0.01
Cho A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)
So sánh A với 0,01.
Cho A= \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.......\frac{9999}{10000}\)
so sánh A với 0,01
A<2/3*4/5*6/7...10000/10001
A^2<A*(2/3*4/5*6/7...10000/10001)
A^2<\(\frac{1\cdot2\cdot3\cdot4\cdot5\cdot6...9999\cdot10000}{2\cdot3\cdot4\cdot5\cdot6\cdot7...10000\cdot10001}\)
A^2<1/10001
0,01=1/100
1/100^2=1/10000
A^2<1/10001<1/10000
Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9998}{9999}.\frac{10000}{10000}\)
So sánh A và 0,01
Đặt A = \(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{9998}{9999}.\frac{10000}{10000}\)
Rõ ràng A < A'
=> A2 < A . A' \(=\frac{1}{10000}=\frac{1}{100^2}\)
Nên A < 0,01
1.Cho A=1/2*3/4*5/6*...*9999/10000
So sánh A với 0,01.
2.Chứng minh rằng:[(1+2+3+...+n)-7] ko chia hết cho 10, với mọi n thuộc N.
Hai câu này dễ ,nhanh nào các bn
Ai nhanh mình tk cho!
Giả sử [(1+2+3+.......+n)-7] chia hết cho 10
=>[(1+2+3+.......+n)-7= \(\frac{n.\left(n+1\right)}{2}\)- 7 \(⋮\)10
=> \(\frac{n.\left(n+1\right)}{2}\)có tận cùng là 7
Nhưng \(\frac{n.\left(n+1\right)}{2}\)chỉ có tận cùng là : 5 ; 2 ; 3 ; 4 ; 0 , không có tận cùng là 7 nên giả thiết trên là sai
Vậy [ ( 1 + 2 + 3 + ... + n ) - 7 ] không chia hết cho 10 với mọi n thuộc N
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...............\frac{9999}{10000}\) SO SÁNH A VỚI 0,01
Ta có: \(0,01=\frac{1}{100}\)
Mà \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)
Ta thấy: \(\frac{1}{100}=\frac{100}{10000}\)
Vì \(\frac{9999}{10000}>\frac{100}{10000}hay\frac{9999}{10000}>\frac{1}{100}\)
Nên \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}>\frac{1}{100}hay\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}>0,01\)
Vậy \(A>0,01\)
Ta có: \(0,01=\frac{1}{100}\)
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{10000}{10001}\)
Xét \(AB=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{10000}{10001}\)
\(\Leftrightarrow\)\(AB=\frac{1.2.3.4.5.6.....9999.10000}{2.3.4.5.6.7.....10000.10001}\)
\(\Leftrightarrow\)\(AB=\frac{1}{10001}\)
Vì A < B
\(\Rightarrow\)A2 < AB
\(\Rightarrow A^2< \frac{1}{10001}< \frac{1}{10000}\)
\(\Rightarrow A< \frac{1}{100}hayA< 0,01\)
Vậy A < 0,01
Cho A = \(\frac{1}{2}\). \(\frac{3}{4}\). \(\frac{5}{6}\). ...... . \(\frac{9999}{10000}\).So sánh A với 0,01.