Cho đa thức f(x)=5x^2 +4x -8 ; g(x)=x^2 - 2x a) Tính giá trị của đa thức f(x) tại x =-2 b) Tính f(x) + g(x) c) Tìm nghiệm của đa thức g(x) Giúp mình với ạ!
Cho f(x) = x^5 + 3x^2 - 5x^3 - x^7 + x^3 + 2x^2 + x^5 - 4x^2 + x^7
g(x) = x^4 + 4x^3 - 5x^8 - x^7 + x^3 + x^2 - 2x^7 + 4x^2 - x^8
Thu gọn và sắp xếp các đa thức f(x) và g(x) theo lũy thừa giảm của biến rồi tìm bậc của các đa thức đó.
Cho đa thức F(x)=5x\(^2\)+2x-x\(^2\)+8-4x\(^2\)
a) thu gọn đa thức
b)tìm nghiệm của đa thức f(x)
a) f(x) = 5x2+2x-x2+8-4x2
= (5x2-x2-4x2)+2x+8
= 2x+8
b) f(x)=2x+8
Để đa thức f(x) có nghiệm thì f(x) = 0
hay 2x+8=0
2x = -8
x = -4
Vậy x = -4 là nghiệm của đa thức f(x)
tick mk nk!
Cho 2 đa thức f(x) = 2x^7 + 3x^2 + 4x^3 - 4x^7 - 5x^2 + 3
g(x) = -3 - 5x + 2x^3 - 5x^7 - 4x^3 + 6x + 3
a,Thu gọn , Sắp xếp theo lũy thừa giảm giần
b, tính f + g , f-g
c, chứng tỏ rằng x=0 là nghiệm của đa thức g(x) nhưng không là nghiệm của đa thức f(x)
a: f(x)=-2x^7+4x^3-2x^2+3
g(x)=-5x^7-2x^3+x
b: f(x)+g(x)
=-2x^7+4x^3-2x^2+3-5x^7-2x^3+x
=-7x^7+2x^3-2x^2+x+3
f(x)-g(x)
=-2x^7+4x^3-2x^2+3+5x^7+2x^3-x
=3x^7+6x^3-2x^2-x+3
c: f(0)=0+0+0+3=3
=>x=0 ko là nghiệm của f(x)
g(0)=0+0+0=0
=>x=0 là nghiệm của g(x)
5 Cho đa thức f(x)=x^5-4x^4-2x^2-7; g(x)=-2x^5+6x^4-2x^2+6
Tính f(x)+g(x); f(x)-g(x)
b) Cho đa thức f(x)=5x^4+7x^3-6x^2+3x-7 ; g(x)=-4x^4+2x^3-5x^2+4x+5
Tính f(x)+g(x) ; f(x)-g(x)
a)f(x)+g(x)=\(x^5-4x^4-2x^2-7-2x^5+6x^4-2x^2+6.\)
=\(-x^5+2x^4-4x^2-1\)
f(x)-g(x)=\(x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
=\(3x^5-10x^4-13\)
b)f(x)+g(x)=\(5x^4+7x^3-6x^2+3x-7-4x^4+2x^3-5x^2+4x+5\)
=\(x^4+9x^3-11x^2+7x-2\)
f(x)-g(x)=\(5x^4+7x^3-6x^2+3x-7+4x^4-2x^3+5x^2-4x-5\)
=\(9x^4+5x^3-x^2-x-12\)
a )
\(f\left(x\right)+g\left(x\right)=x^5-4x^4-2x^2-7+-2x^5+6x^4-2x^2+6\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=\left(x^5-2x^5\right)+\left(6x^4-4x^4\right)-\left(2x^2+2x^2\right)+\left(6-7\right)\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)
\(f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7-\left(-2x^5+6x^4-2x^2+6\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(x^5+2x^5\right)-\left(4x^4+6x^4\right)+\left(2x^2-2x^2\right)-\left(6+7\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)
Cho các đa thức f (x) =2x^3-5x^2+4x-m và g(x)=2x-1 Tìm m để đa thức f (x) chia hết cho đa thức g (x).
cần gấp
\(\Leftrightarrow1-m=0\)
hay m=1
Cho đa thức f(x)=x^4 - 4x^3 -5x+8 . CMR: nếu x=a là một nghiệm nguyên của f(x) thì a là một ước của 8
Cho hai đa thức: f(x)= 5x^4+x^3-x+11+x^4-5x^3
g(x)2x^2+3x^4+9-4x^2-4x^3+2x^4-x
a) Thu gon và sắp xếp mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Tính h(x)=f(x)-g(x)
c) Chứng tỏ rằng đa thức h(x) không có nghiêm
a) Ta có: \(f\left(x\right)=5x^4+x^3-x+11+x^4-5x^3\)
\(=\left(5x^4+x^4\right)+\left(x^3-5x^3\right)-x+11\)
\(=6x^4-4x^3-x+11\)
Ta có: \(g\left(x\right)=2x^2+3x^4+9-4x^2-4x^3+2x^4-x\)
\(=\left(3x^4+2x^4\right)-4x^3+\left(2x^2-4x^2\right)-x+9\)
\(=5x^4-4x^3-2x^2-x+9\)
b) Ta có: h(x)=f(x)-g(x)
\(=6x^4-4x^3-x+11-5x^4+4x^3+2x^2+x-9\)
\(=x^4+2x^2+2\)
c) Ta có: \(x^4\ge0\forall x\)
\(2x^2\ge0\forall x\)
Do đó: \(x^4+2x^2\ge0\forall x\)
\(\Leftrightarrow x^4+2x^2+2\ge2>0\forall x\)
Vậy: Đa thức h(x) không có nghiệm(Đpcm)
cho đa thức f(x)=-2x^3+x-1+4x^2-5x+3x^3
a.thu gọn và sắp xếp đa thức f(x) theo lũy thừa giảm dần của biến
b.tìm hệ số tự do và bậc của đa thức f(x)
Lời giải:
a.
$f(x) =-2x^3+x-1+4x^2-5x+3x^3=(-2x^3+3x^3)+4x^2+(-5x+x)-1$
$=x^3+4x^2-4x-1$
b.
Hệ số tự do: $-1$
Bậc $f(x)$: 3
Tìm số dư r và đa thức thương Q(x) khi thực hiện phép chia f(x)=5x^4–4x^3+2x^2+7x+8 cho g(x)=3x–1