|x-y|+|y+9/25|=0
|x-y|+|y+9/25|=0
Vì GTTĐ luôn lớn hơn hoặc bằng 0 mà theo đề bài
=> \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\)
=> \(\hept{\begin{cases}x-y=0\\y=\frac{-9}{25}\end{cases}}\)
=> \(\hept{\begin{cases}x=\frac{-9}{25}\\y=\frac{-9}{25}\end{cases}}\)
Vậy,.........
|x-y|+|y+9/25|=0
Ta có : \(\left|x-y\right|\ge0\)
\(\left|y+\frac{9}{25}\right|\ge0\)
Theo đề bài ra , ta có : \(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
\(\Rightarrow\begin{cases}\left|x-y\right|=0\\\left|x+\frac{9}{25}\right|=0\end{cases}\Rightarrow\begin{cases}y=x\\x=-\frac{9}{25}\end{cases}\Rightarrow\begin{cases}y=-\frac{9}{25}\\x=-\frac{9}{25}\end{cases}\)
Vậy \(x=y=-\frac{9}{25}\)
|x-y|+|y+9/25|=0
Ta có :
\(\left|x-y\right|\ge0\forall x;y\\ \left|y+\dfrac{9}{25}\right|\ge0\forall y\\ \Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\forall x;y\\ \Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|y+\dfrac{9}{25}\right|=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=-\dfrac{9}{25}\end{matrix}\right.\\ Vậyx=y=-\dfrac{9}{25}\)
tìm x biết |x-y| + |y+9/25|=0
Tìm x,y∈Z,biết:
Tìm x,y∈Z,biết:
18*) (x-6)(3x-9)>0
19*) -2x(x+5)<0
20*) (2x-1)(6-x) >0
21*) (2-x)(x+7) <0
22*) |x+3|≤2
23*) (x + 3)(x2 + 2) > 0
24*) (x - 2)(-9 - x2 ) < 0
25*) |x + 25| + |5 - y|=0
26*) |x - 40 | + |x - y + 10 | lớn hơn hoặc bằng 0
27*) (x – 3)(3y + 2) = 7
28*) 5xy – 5x + y = 5
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
21.
\((2-x)(x+7)< 0\)
TH1.
\(\orbr{\begin{cases}2-x>0\\x+7< 0\end{cases}\Rightarrow\orbr{\begin{cases}x< 2\\x>-7\end{cases}}\Rightarrow-7< x< 2}\)
TH2.
\(\orbr{\begin{cases}2-x< 0\\x+7>0\end{cases}\Rightarrow\orbr{\begin{cases}x>2\\x< -7\end{cases}}\Rightarrow2< x< -7}\)(vô lí)
Vậy \(-7< x< 2\) thì \((2-x)(x+7)< 0\)
|x-y|+|y+\(\frac{9}{25}\)|=0
Ta có / x-y / + / y + \(\frac{9}{25}\)/ =0
=> \(\hept{\begin{cases}x-y=0\\y+\frac{9}{15}=0\end{cases}}\)
=>\(\hept{\begin{cases}x-y=0\\y=-\frac{9}{15}\end{cases}}\)
Với y = \(\frac{-9}{15}\) Ta có x là số đối của y
=> x = \(\frac{9}{15}\)
|x-y|+|y+\(\frac{9}{25}\)|=0
Tìm x,y biết
a. |1/2 - 1/3 +x | =-1/4 - |y|
b. |x-y| + |y+9/25 | =0
giúp mình giải nhanh nhanh nha mấy bạn
\(|x-y|+|y+\frac{9}{25}|=0\)
Tìm x