Chứng minh rằng \(a^b=b^c=c^d=d^e=e^a\)thì a = b = c = d = e
cho 5 số nguyên dương a;b;c;d;e .chứng minh rằng (a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e) chia hết cho 288
Là:
a>b,c,d,e
b>c,d,e
c>d,e
d>e
đúng ko?
Thử dùng đi-rích-lê+ modun=((
Đặt biểu thức cần chứng minh là P
Ta có:\(288=3^2\cdot2^5\)
Xét 4 số \(a,b,c,d\) thì tồn tại 2 số có cùng số dư khi chia cho 3.
Giả sử \(a\equiv b\left(mod3\right)\Rightarrow a-b⋮3\left(1\right)\)
Xét 4 số \(b,d,c,e\) thì tông tại 2 số có cùng số dư khi chia cho 3.
Giả sử \(c\equiv d\left(mod3\right)\Rightarrow c-d⋮3\left(2\right)\)
Từ (1);(2) suy ra \(P⋮9\left(3\right)\)
Trong 5 số đã cho thì chắc chắn có 3 số cùng tính chẵn lẻ.
Chúng ta cần xét các trường hợp có thể xảy ra.
4 số chẵn giả sử các số đó là:a,b,c,d.
Đặt \(a=2a_1;b=2b_1;c=2c_1;d=2d_1\) với \(a_1;b_1;c_1;d_1\in N\)
\(\Rightarrow P=\left(2a_1-2b_1\right)\left(2a_1-2c_1\right)\left(2a_1-2d_1\right)\left(2a_1-e\right)\left(2b_1-2c_1\right)\left(2b_1-2d_1\right)\left(2b_1-e\right)\left(2c_1-2d_1\right)\left(2c_1-e\right)\left(2d_1-e\right)\)
\(\Rightarrow P=2^5\cdot\left(a_1-b_1\right)\left(a_1-c_1\right)\left(a_1-d_1\right)\left(2a_1-e\right)\left(b_1-c_1\right)\left(b_1-d_1\right)\left(2b_1-e\right)\left(2c_1-2d_1\right)\left(2c_1-e\right)\left(2d_1-e\right)\)
Giả sử 3 số a,b,c chẵn còn d,e lẻ.
Đặt \(a=2a_2;b=2b_2;c=2c_2;d=2d_2+1;e=2e_2+1\)
\(\Rightarrow P=\left(2a_2-2b_2\right)\left(2a_2-2c_2\right)\left(2b_2-2c_2\right)Q\)
\(\Rightarrow P=16\left(a_2-b_2\right)\left(a_2-c_2\right)\left(b_2-c_2\right)\left(d_2-e_2\right)\cdot Q\)
Xét 3 số \(a_2;b_2;c_2\) thì có 2 số chia cho 2 có cùng số dư.
Giả sử 2 số đó là \(a_2;b_2\)
\(\Rightarrow a_2-b_2⋮2\Rightarrow P⋮32\)
Giả sử có 3 số lẻ là \(a,b,c\) và 2 số chẵn là \(d,e\)
Đặt \(a=a_3+1;b=b_3+1;c=c_3+1;d=2d_3;e=2e_3\)
Chứng minh tương tự như TH2 thì P chia hết cho 32.
Trong cả 3 trường hợp đều chia hết cho 32 nên P chia hết cho 32
Mà \(\left(32;9\right)=1\Rightarrow P⋮32\cdot9=288\left(đpcm\right)\)
cho 5 số nguyên dương a;b;c;d;e .chứng minh rằng (a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e) chia hết cho 288
Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)
*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).
*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.
-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.
Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1
=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.
=>P chia hết cho 32
Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.
=> P chia hết cho 32(2).
Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.
Mà (9,32)=1
=>P chia hết cho 9.32.
=>P chia hết cho 288
=> ĐPCM
Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)
*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).
*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.
-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.
Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1
=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.
=>P chia hết cho 32
Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.
=> P chia hết cho 32(2).
Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.
Mà (9,32)=1
=>P chia hết cho 9.32.
=>P chia hết cho 288
=> ĐPCM
Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)
*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).
*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.
-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.
Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1
=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.
=>P chia hết cho 32
Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.
=> P chia hết cho 32(2).
Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.
Mà (9,32)=1
=>P chia hết cho 9.32.
=>P chia hết cho 288
=> ĐPCM
bấm đúng cho tớ nha các bạn
Cho tỷ lệ thức a/b=b/c=c/d=d/e . Chứng minh rằng : a/e= (a+b+c+d/b+c+d+e)^4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a+b+c+d}{b+c+d+e}\)
=>\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}.\frac{d}{e}=\left(\frac{a+b+c+d+e}{b+c+d+e}\right)^4\)
=>\(\frac{a.b.c.d}{b.c.d.e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)^4\)
=>\(\frac{a}{e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)^4\)
=>đpcm
Cho tỷ lệ thức a/b=b/c=c/d=d/e . Chứng minh rằng : a/e= (a+b+c+d/b+c+d+e)^4
Chứng minh rằng:
Với a, b, c, d, e, thuộc N* và a/b < c/d thì a/b < (c+e)/ (d+e).
Cho a, b, c, d, e, g >0 thoả mãn a/b= b/c= c/d= d/e= e/g. Chứng minh rằng:
(a+ b+ c+ d+ e/ b+ c+ d+ e+ g)^2020= a^404/ g^404
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{g}=\frac{a+b+c+d+e}{b+c+d+e+g}\)
=> \(\left(\frac{a}{b}\right)^{404}.\left(\frac{b}{c}\right)^{404}.\left(\frac{c}{d}\right)^{404}.\left(\frac{d}{e}\right)^{404}.\left(\frac{e}{g}\right)^{404}\)
\(=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}\)
=> \(\left(\frac{abcde}{bcdeg}\right)^{404}=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404+404+404+404}\)
=> \(\frac{a^{404}}{g^{404}}=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{2020}\)
Cho các số a,b,c,d,e thoả mãn |a-b| = 2|b-c| = 3|c-d| = 5|e-a|. Chứng minh rằng a=b=c=d=e
Cho 5 số tự nhiên a , b , c , d , e thỏa mãn a^b = b^c = c^d = d^e = e^a . Chứng minh rằng 5 số a , b , c , d , e bằng nhau
Cho a/b=b/c=c/d=d/e . Chứng minh rằng : a/e= (a+b+c+e/b+c+d+e)^4
Giải ra nha, tui tick cho