Cho tam giác ABC vuông tại A (AC lớn hơn AB) đường caoAH biết BC-AH=6cm , trên tia HC lấy I sao cho HI=AC-AB .Tính AI
Cho tam giác ABC vuông tại A, AC > AB, có đường cao AH. BC - AC = 6cm. Trên tia HC lấy điểm I sao cho HI = AC - AB. Tính AI
Cho tam giác ABC vuông tại A, đường cao AH có BC - AH = 6cm, trên HC lấy điểm I sao cho HI=AB-AC. tính AI
Cho tam giác ABC vuông tại A ,AB nhỏ hơn AC đường cao AH biết AB = 6 cm ah = 4,8 cm
a)Tính AC và Tính góc B
b) trên HC lấy D sao cho ha = HD Kẻ DI vuông BC Chứng minh AI = AB
a: Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)
=>\(HB^2=6^2-4,8^2=12.96\)
=>\(HB=\sqrt{12,96}=3,6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BA^2=BH\cdot BC\)
=>\(BC=\dfrac{6^2}{3,6}=10\left(cm\right)\)
Xét ΔABC vuông tại A có \(AB^2+AC^2=BC^2\)
=>\(AC^2+6^2=10^2\)
=>\(AC^2=100-36=64\)
=>\(AC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
b: Xét ΔHAD có \(\widehat{AHD}=90^0\); HA=HD
nên ΔAHD vuông cân tại H
Xét tứ giác IDBA có \(\widehat{IDB}+\widehat{IAB}=90^0+90^0=180^0\)
nên IDBA là tứ giác nội tiếp
=>\(\widehat{AIB}=\widehat{ADB}=45^0\)
Xét ΔAIB có \(\widehat{BAI}=90^0;\widehat{AIB}=45^0\)
nên ΔAIB vuông cân tại A
=>AI=AB
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC tại K . Từ K vẽ KH vuông góc BC ( H thuộc BC)
a) Giả sử AB = 6cm, BC = 10cm. Tính AC .
b) Chứng minh tam giác ABK = tam giác HBK.
c) Trên tia đối tia AB lấy điểm I sao cho AI= HC. Chứng minh AH // CI.
d) Chứng minh I, H, K thẳng hàng.
a: AC=8cm
b: XétΔABK vuông tại A và ΔHBK vuông tại H có
BK chung
\(\widehat{ABK}=\widehat{HBK}\)
Do đó: ΔABK=ΔHBK
c: Xét ΔBIC có BA/AI=BH/HC
nên AH//CI
d: Xét ΔAKI vuông tại A và ΔHKC vuông tại H có
KA=KH
AI=HC
Do đó: ΔAKI=ΔHKC
Suy ra: \(\widehat{AKI}=\widehat{HKC}\)
=>\(\widehat{AKI}+\widehat{AKH}=180^0\)
hay I,H,K thẳng hàng
Bài 6. (3 điểm) Cho tam giác ABC vuông tại A có AB=6cm,BC =10cm.
a) Giải tam giác ABC.
b) Kẻ đường cao AH. Tính độ daif AH, HC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD < AC , AI vuong góc BD . Gọi K là giao điểm của HI và AC. Chứng minh: BI .BD = BH.BC và KI .KH = KD.KC.
c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AI là đường cao ứng với cạnh huyền BD, ta được:
\(BI\cdot BD=AB^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BI\cdot BD=BH\cdot BC\)
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a) Tính độ dài cạnh BC?So sánh các góc của tam giác ABC.
b) Tia phân giác của góc ABC cắt AC tại K . Kẻ KH I BC tại H.
Chung minh: ΔΒΑΚ = ΔΒΗΚ.
=
c) Trên tia đối của tia AB lấy điểm 1 sao cho AI = HC . Chứng minh
ba điểm 1,K,H thắng hàng.
d) Chứng minh: AH ||CI .
làm giúp mik câu c và D thôi nhé
a: BC=10cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAK vuông tại A và ΔBHK vuông tại H có
BK chug
\(\widehat{ABK}=\widehat{HBK}\)
Do đó: ΔBAK=ΔBHK
c: Xét ΔAKI vuông tại A và ΔHKC vuông tại H có
KA=KH
AI=HC
Do đó: ΔAKI=ΔHKC
Suy ra: \(\widehat{AKI}=\widehat{HKC}\)
=>\(\widehat{AKI}+\widehat{AKH}=180^0\)
hay I,H,K thẳng hàng
Cho tam giác ABC vuông tại A có AB < AC. Vẽ AH vuông BC tại H. Vẽ HI vuông AB tại I. Trên tia HI lấy D sao cho I là trung điểm của DH.
a) Chứng minh tam giác ADI = tam giác AHI
b) Chứng minh AD vuông góc BD
c) Cho BH = 9 và HC = 16. Tính AH
d) Vẽ HK vuông góc AC tại K và trên tia HK lấy điểm E sao cho K là trung điểm của HE. Chứng minh DE < BD + CE
hộ mik câu c và d với
Hình bạn tự vẽ nha
c)Có BH=9 ; HC=16 mà BH+HC=BC => BC=25
Xét tam giác ABC vuông tại A có:
AB^2 + AC^2 = BC^2 (đ/l Py-ta-go)
mà BC=25
=>AB^2+AC^2=25^2=625
Xét tam giác AHB vuông tại H có:
AB^2=AH^2+BH^2 (1)
Xét tam giác AHC vuông tại H có:
AC^2=AH^2+HC^2 (2)
Cộng từng vế của (1) và (2) ta được :
AB^2+AC^2=(AH^2+BH^2)+(AH^2+HC^2)
=2AH^2+BH^2+HC^2
mà AB^2+AC^2=625 ; BH=9 ; HC=16
=>625=2AH^2+81+256
=>625=2AH^2+337
=>2AH^2=625-337=288
=>AH^2=144
=>AH=12
d)Gọi M là trung điểm của BC => BC=2BM=2CM
Có AH vuông góc BC mà AB<AC
=>HB<HC mà HB+HC=BC
=>HB<1/2 BC
=>HB<BM
Có AH vuông góc BC hay AH vuông góc HM
=>tam giác AHM vuông tại H
=>AH<AM (AM là cạnh huyền)
CM được AH=AD=AE
mà AH<BM
=>BM>AD và BM>AE
=>2BM > AD+AE=DE
mà 2BM=BC
=>BC>DE
=>BH+HC>DE
hay BD+CE>DE (CM được BH=BD và HC=CE)
Vậy.....
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. a) Tính độ dài đoạn BC. b) Vẽ AH ⊥ BC tại H. Trên HC lấy D sao cho HD = HB. Chứng minh: AB = AD. c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ED ⊥ AC.
a) xét tam giac ABC vuông tại A ta có
BC2= AB2+AC2 (định lý pitago)
BC2=62+82
BC2=100
BC=10
b) Xét tam giac ABH và tam giac ADH ta có
HB=HD (gt)
AH=AH (cạnh chung)
góc AHB= góc AHD (=90)
-> tam giác ABH= tam giac ADH (c-g-c)
-> AB= AD ( 2 cạnh tương ứng)
c)
Xét tam giac ABHvà tam giac EDH ta có
HB=HD (gt)
AH=EH (gt)
góc AHB= góc EHD (=90)
-> tam giác ABH= tam giac EDH (c-g-c)
-> góc ABH = góc EDH (2 góc tương ứng )
mà 2 góc nằm ở vị trí sole trong
nên AB// ED
lại có AB vuông góc AC ( tam giac ABC vuông tại A)
do đó ED vuông góc AC
các bạn ơi chứng minh hộ mk ý d này CM:BD<AE
3:Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC tại K . Từ K vẽ KH BC ( HBC)
a) Cho AB = 6cm, BC = 10cm. Tính AC .
b) Chứng minh ABK = HBK.
c) Trên tia đối tia AB lấy điểm I sao cho AI= HC. Chứng minh I, H, K thẳng hàng.
d) Chứng minh AH // CI
a: AC=8cm
b: Xét ΔABK vuông tại A và ΔHBK vuông tại H có
BK chung
\(\widehat{ABK}=\widehat{HBK}\)
Do đó: ΔABK=ΔHBK
c: Xét ΔAIK vuông tại A và ΔHCK vuông tại H có
AI=HC
KA=KH
Do đó:ΔAIK=ΔHCK
Suy ra: \(\widehat{AKI}=\widehat{HKC}\)
=>\(\widehat{HKC}+\widehat{HKI}=180^0\)
=>I,H,K thẳng hàng
d: Xét ΔBIC có BA/AI=BH/HC
nên AH//CI