Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Văn Anh
Xem chi tiết
Hoàng Văn Anh
Xem chi tiết
Nguyễn Phương Uyên
19 tháng 9 2019 lúc 12:43

\(a,4x^2+9y^2+4x-24y+17=0\)

\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)

\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)

\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)

Nguyễn Hữu Hiếu
Xem chi tiết
Nguyễn Hữu Hiếu
25 tháng 9 2016 lúc 21:07

jup tui

Tran Thi Xuan
Xem chi tiết
Nhiêu Trần Giáng Ngọc
21 tháng 1 2016 lúc 15:54

x=2

y=-2

z=-2

Trần Đông
Xem chi tiết
lê thị hương giang
13 tháng 12 2017 lúc 12:31

a, Tìm GTNN

\(A=2x^2+y^2+2xy-8x+2028\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+16\right)+2012\)

\(=\left(x+y\right)^2+\left(x-4\right)^2+2012\)

Ta có :

\(\left(x+y\right)^2\ge0\) với mọi x

\(\left(x-4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)

Dấu = xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+y\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\)

Vậy \(Min_A=2012\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\)

Ngọc Hiền
13 tháng 12 2017 lúc 12:35

A=2x2+y2+2xy-8x+2028=(x2+2xy+y2)+(x2-8x+16)+2012=(x+y)2+(x-4)2+2012

Vì (x+y)2\(\ge\)0\(\forall\)x,y

(x-4)2\(\ge0\forall x\)

=>(x+y)2+(x-4)2\(\ge0\)

=>(x+y)2+(x-4)2+2012\(\ge2012\forall x,y\)

Đạt được khi và chỉ khi:

\(\left\{{}\begin{matrix}x-4=0\rightarrow x=4\\x+y=0\rightarrow y=-4\end{matrix}\right.\)

Vậy Amin=2012<=>x=4,y=-4

kuroba kaito
13 tháng 12 2017 lúc 12:41

a) A=2x2+y2+2xy-8x+2028

=(x2+2xy+y2)+(x2-8x+16)+2012

=(x+y)2+(x-4)2+2012

do (x+y) 2≥ 0 ∀x;y

(x-4)2≥ 0 ∀x

=> (x+y)2+(x-4)2 ≥ 0

=> (x+y)2+(x-4)2+2012 ≥ 2012

=> A≥2012

vậy GTNN A=2012 khi \(\left[{}\begin{matrix}x+y=0\\x-4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}y=-4\\x=4\end{matrix}\right.\)

Giap van Khoi
Xem chi tiết
Nguyễn Văn Anh Kiệt
4 tháng 8 2017 lúc 14:52

a)\(x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+2xy+y^2+y^2-2y+1=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}y-1=0\\x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=-y=-1\end{cases}}\)

Vậy x=-1 y=1

Trần Anh
4 tháng 8 2017 lúc 14:58

a)  \(x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\y=1\end{cases}\Rightarrow}x=-1;y=1}\)

b) \(5x^2+3y^2+z^2-4x+6xy+4z+6=0\)

\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(3x^2+6xy+3y^2\right)+\left(z^2+4z+4\right)=0\)

\(\Leftrightarrow2.\left(x-1\right)^2+3.\left(x+y\right)^2+\left(z+2\right)^2=0\)

\(\Rightarrow\)  \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)

           \(\left(x+y\right)^2=0\Rightarrow x+y=0\Rightarrow y=-x=-1\) 

            \(\left(z+2\right)^2=0\Rightarrow z+2=0\Rightarrow z=-2\)

thanh hai
Xem chi tiết
thanh xuân
Xem chi tiết
Khỏi Cần Hỏi
Xem chi tiết
Khỏi Cần Hỏi
15 tháng 7 2018 lúc 20:19

.

giúp mk đi. Mk đag cần gấp