Tìm cặp số nguyên x, y thỏa mãn:
x+4 và Ix+2I+IyI=6
bài 1:tìm các cặp số nguyên (x,y)thỏa mãn đồng thời các đk sau:
x+y=5 và Ix+1I+Iy-2I=4
x-y=3 và |x-6|+|y-1|=4
bài 1:tìm các cặp số nguyên (x,y)thỏa mãn đồng thời các đk sau:
x+y=5 và Ix+1I+Iy-2I=4
a) Tìm cặp số nguyên (x;y) thỏa mãn:x-y-6=2xy
b) Tìm mọi số nguyên tố x,y thỏa mãn: x2- 2y2=1
tìm cặp số nguyên dương (x,y) thỏa mãn:x/4-5/y=3/2
.Ta có:
x4−5y=32x4−5y=32
→x−20y=6→x−20y=6
→x−6=20y→x−6=20y
→(x−6)y=20→(x−6)y=20
Mà x,y∈N→(x−6,y)x,y∈N→(x−6,y) là cặp ước của 2020
Mặt khác y∈N→y≥0y∈N→y≥0
→(x−6,y)∈{(20,1),(10,2),(5,4),(4,5),(2,10),(1,20)}→(x−6,y)∈{(20,1),(10,2),(5,4),(4,5),(2,10),(1,20)}
→(x,y)∈{(26,1),(16,2),(11,4),(10,5),(8,10),(7,20)}
có bnh cặp số nguyên (x;y) thỏa mãn:
x/3 + 1/6 = -1/y
\(\dfrac{x}{3}+\dfrac{1}{6}=\dfrac{-1}{y}\)
=>\(\dfrac{2x+1}{6}=\dfrac{-1}{y}\)
=>y(2x+1)=-6
mà 2x+1 lẻ
nên \(\left(2x+1\right)\cdot y=1\cdot\left(-6\right)=\left(-1\right)\cdot6=3\cdot\left(-2\right)=\left(-3\right)\cdot2\)
=>\(\left(2x+1;y\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(3;-2\right);\left(-3;2\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-6\right);\left(-1;6\right);\left(1;-2\right);\left(-2;2\right)\right\}\)
a,tìm x thuộc Z, biết Ix +5I-(-17) = 20
b,tìm các cặp số nguyên thỏa mãn (x-2).(y+3) = 15
c,tìm giá trị nhỏ nhất của biểu thức A= Ix-2I+Iy-5) -10 với x,y thuộc Z
các bạn trả lời nhanh mình đang vội
a) | x + 5 | - ( -17 ) = 20
=> | x + 5 | = 3
=> x + 5 = 3 hoặc x + 5 = -3
=> x = -2 hoặc x = -8
a) \(\left|x+5\right|-\left(-17\right)=20\)
\(\left|x-5\right|+17=20\)
\(\left|x-5\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-5=3\\x-5=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=8\\x=2\end{cases}}}\)
vậy \(x\in\left\{8;2\right\}\)
b) \(\left(x-2\right)\left(y+3\right)=15\)
Ta có bảng:
x-2 | 1 | 15 | -1 | -15 |
x | 3 | 17 | 1 | -13 |
y+3 | 15 | 1 | -15 | -1 |
y | 12 | -2 | -18 | -4 |
Vậy..
c) \(A=\left|x-2\right|+\left|y-5\right|-10\)
Ta có: \(\left|x-2\right|\ge0\forall x\inℝ\)
\(\left|y+5\right|\ge0\forall y\inℝ\)
\(\Rightarrow A=\left|x-2\right|+\left|y-5\right|-10\ge-10\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}x-2=0\\y-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}}\)
Vậy \(x=2;y=5\)khi đạt \(GTNN=-10\)
hok tốt!!
Tìm tất cả các cặp số nguyên x,y thỏa mãn:x(2y+3)=y+1
tìm x;y thuộc Z biết
a, IxI+IyI=1
b, IxI+IyI=4
c, Ix+2I+Iy-7I=0
Tìm tất cả các cặp số nguyên x,y thỏa mãn:x(2y+3)=y+1
x(2y+3) = y +1 => y+1 chia hết cho 2y +3
=> 2y + 2 chia hết cho 2y +3
=> 2y + 3 - 1 chia hết cho 2y + 3
=> -1 chia hết cho 2y +3
=> 2y + 3 = -1
2y +3 = -1 = > y = -2 => -x = -1 => x=1
2y + 3 = 1 => y = 1 => x = 0
Ta có : x .( 2y+ 3 ) = y + 1
=> ( y + 1 ) \(⋮\)( 2y + 3 )
=> \(\left(2y+2\right)⋮\left(2y+3\right)\)
=> ( 2y + 3 - 1 ) \(⋮\) ( 2y+ 3 )
=> - 1 \(⋮\) ( 2y + 3 )
=> ( 2y+ 3 ) \(\in\left\{1;-1\right\}\)
TH1 :
2y + 3 =-1 <=> y = -2
=> x = 1
TH2 :
2y + 3 = 1 <=> y = -1
=> x = 0
Vậy ta có các cặp số nguyên ( x , y ) thỏa mãn là : ( 0 , -1 ) ; ( 1 ; -2 )
x=(y+1)/(2y+3)
mà x,y thuộc z => (y+1)/(2y+3)thuộc z
=> (y+1)chia hết cho(2y+3)
hay 2x=2y+2chia hết cho(2y+3)
=>2y+2-(2y+3)chia hết cho(2y+3)
=.1chia hết cho(2y+3)
=> 2y+3 thuộc ước của 1
=> y thuộc -2 ;-1
=>x thuộc 0;1
hok tốt