Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thành Đạt
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 10:14

Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))

Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)

\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)

\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)

\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)

Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)

Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 10:26

Phần đặt ẩn a,b,c bạn bỏ đi nhé ^^

phan thị minh anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
25 tháng 9 2016 lúc 17:59

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

Michiel Girl mít ướt
Xem chi tiết
Nguyễn Huy Hải
14 tháng 10 2015 lúc 0:05

Có: \(\frac{y-2}{3}=\frac{2y-4}{6};\frac{z-3}{4}=\frac{3z-9}{12}\)

\(\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{14-6}{8}=\frac{8}{8}=1\)

Vì \(\frac{x-1}{2}=1\Rightarrow x-1=1.2=2\Rightarrow x=2+1=3\)

\(\frac{y-2}{3}=1\Rightarrow y-2=3.1=3\Rightarrow y=3+2=5\)

\(\frac{z-3}{4}=1\Rightarrow z-3=1.4=4\Rightarrow z=4+3=7\)

Tự kết luận

Nguyễn Công Minh Hoàng
Xem chi tiết
Nhóc vậy
Xem chi tiết
Phùng Minh Quân
1 tháng 2 2018 lúc 18:49

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}=\frac{16}{a+b+c+d}\)ta có :

\(\frac{16}{3x+3y+2z}\le\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\)

\(\frac{16}{3x+2y+3z}\le\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\)

\(\frac{16}{2x+3y+3z}\le\frac{1}{y+z}+\frac{1}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\)

Cộng theo vế 3 đẳng thức trên ta được :

\(16.\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)

\(\le4.\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=4.6=24\)

\(\Rightarrow\)\(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)

Thắng Nguyễn
1 tháng 2 2018 lúc 18:43

Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath

Hn . never die !
6 tháng 2 2019 lúc 19:32

Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath

NGUYỄN DOÃN ANH THÁI
Xem chi tiết
Thắng Nguyễn
26 tháng 10 2016 lúc 6:21

Ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\ge\frac{9}{2\left(x+y+z\right)}\)\(\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có: \(\frac{1}{2x+3y+3z}=\frac{\left(\frac{3}{4}+\frac{1}{4}\right)^2}{2\left(x+y+z\right)+y+z}\le\frac{9}{32\left(x+y+z\right)}+\frac{1}{16\left(y+z\right)}\)

Do đó:

\(\frac{1}{2x+3y+3z}+\frac{1}{2y+3x+3z}+\frac{1}{2z+3x+3y}\)

\(\le\frac{9}{32\left(x+y+z\right)}\cdot3+\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(\le\frac{9}{32\cdot\frac{3}{4}}+\frac{1}{16}\cdot6=\frac{3}{2}\)(Đpcm)

Nhóc vậy
1 tháng 2 2018 lúc 18:41

Tại sao \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\ge\frac{9}{2\left(x+y+z\right)}\)

Minh Quang Nguyễn
5 tháng 3 2019 lúc 21:14

Đó là BĐT Cauchy 

Trần Ngô Hạ Uyên
Xem chi tiết
Trần Ngô Hạ Uyên
Xem chi tiết
Nguyễn Ngọc Khánh Vy
7 tháng 3 2018 lúc 20:26

Mjk quên cách r

Xl nha

Kgiúp đc bn

Trần Ngô Hạ Uyên
7 tháng 3 2018 lúc 20:29

Nhớ lại giúp mình với nen nỉ

Nguyễn Đại Dương
19 tháng 10 2018 lúc 5:45

Ta có:x/3=y/4=z/5

=>đặt x=3k;y=4k;z=5k

2x^2+2y^2-3z^2=-100

<=>-25k^2=-100

<=>k^2=4

<=>\(\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

<=>\(\orbr{\begin{cases}\hept{\begin{cases}x=6\\y=8\\z=10\end{cases}}\\\hept{\begin{cases}x=-6\\y=-8\\z=-10\end{cases}}\end{cases}}\)

Trần Thảo Nguyên
Xem chi tiết
Wang Jun Kai
13 tháng 10 2015 lúc 20:36

Ta có: \(\frac{x-1+1}{2+1}=\frac{y-2+2}{3+2}=\frac{z-3+3}{4+3}=\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x}{3}=\frac{2y}{10}=\frac{3z}{21}=\frac{-10}{14}=\frac{-5}{7}\)

\(\Rightarrow\frac{x}{3}=\frac{-5}{7}\Rightarrow x=\frac{-15}{7};\frac{y}{5}=\frac{-5}{7}\Rightarrow y=\frac{-25}{7};\frac{z}{7}=\frac{-5}{7}\Rightarrow z=-5\)