Tìm giá trị nhỏ nhất của biểu thức E = \(\dfrac{5-3x}{4x-8}\)(x ∈ Z, x ≠ 2)
tìm giá trị nhỏ nhất của biểu thức E = 5-3x/4x-8 (x E Z/ x ko = 2
tìm giá trị nhỏ nhất của biểu thức E=\(\dfrac{5-3x}{4x-8}\)(xϵz, x≠2)
Lời giải:
Ta có:
$E=\frac{5-3x}{4x-8}=\frac{1}{4}.\frac{5-3x}{x-2}=\frac{1}{4}(\frac{1}{2-x}-3)$
Để $E$ nhỏ nhất thì $\frac{1}{2-x}$ nhỏ nhất.
Điều này xảy ra khi $2-x$ là số âm lớn nhất.
Mà $x\in\mathbb{Z}$ nên $2-x\in\mathbb{Z}$
$\Rightarrow 2-x$ âm lớn nhất bằng $-1$
Khi đó, E nhỏ nhất bằng $\frac{1}{4}(-1-3)=-1$
tìm giá trị nhỏ nhất của biểu thức E=5-3x/4x-8(x thuộc Z, x khác 2)
giúp mk ik mốt mk thi ù
Câu 1: Tính giá trị nhỏ nhất của biểu thức : \(E=\frac{5-3x}{4x-8}\left(x\in Z,x\ne2\right)\)
E=\(\dfrac{5-3x}{4x-8}=\dfrac{-3\left(x-2\right)-1}{4\left(x-2\right)}=\dfrac{-3}{4}-\dfrac{1}{4x-8}\)nhỏ nhất ⇔\(\dfrac{1}{4x-8}\) lớn nhất
⇔4x-8 nhỏ nhất ⇔4x-8=1(vì mẫu lớn hơn 0)
⇔x=\(\dfrac{9}{4}\)
Vậy GTNN của E=-\(\dfrac{7}{4}\)khi x=\(\dfrac{9}{4}\)
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
tìm giá trị nhỏ nhất của biểu thức E = \(\frac{5-3x}{4x-8}\left(x\in Z,x\ne2\right)\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) S= \(\dfrac{3}{2x^2+2x+3}\)
b) T= \(\dfrac{5}{3x^2+4x+15}\)
c) V= \(\dfrac{1}{-x^2+2x-2}\)
d) X= \(\dfrac{2}{-4x^2+8x-5}\)