bài 1 Tìm x,y sao cho biểu thức A=2x2+9y2−6xy−6x−12y+2024 đạt GTNN. Tìm giá trị đó.
Tìm x,y sao cho biểu thức A=\(2x^2+9y^2-6xy-6x-12y+2024\)đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó.
3) Tìm giá trị x,y cho biểu thức
A=2x2+9y2-6xy-6x-12y+2024 đạt giá trị nhỏ nhất tìm được giá trị đó
tìm x và y sao cho biểu thức:
A= 2x^2+9y^2-6xy-6x-12y+2010 đạt GTNN, Tìm GTNN đó
Bài này đến lớp 8 còn làm đc (bọn chuyên).
Không khó đau, mình hd nhé:
Bạn thấy có 2x^2 và 9y^2 không
2x^2 không là bình phương của gì cả và không ghép được với các số sau nên tách ra.
Giải như bình thường.
\(x^2+x^2+\left(3y\right)^2-6xy-6x-12y+2010\)
\(\left(x-3y\right)^2-4x-12y+x^2-2x+2010\)
\(\left(x-3y\right)^2-4\left(x-3y\right)+4+x^2-2x+1+2005\)
\(\left(x-3y+2\right)^2+\left(x-1\right)^2+2005\ge2005\)
tìm x;y sao cho :
A= 2x^2 +9y^2 - 6xy - 6x - 12y + 2024 đạt giá trị nhỏ nhất
Tìm GTNN:
1. G=2x2+9y2-6xy-6x-12y+2021
2. H=2x2+4y2+4xy+4y+9
3. I= x2-4xy+5y2+10x-22y+28
4. K=x2+5y2-4xy+6x-14y+15
Tìm x,y sao cho biểu thức A=\(2x^2+9y^2-6xy-6x-12y+2024\)đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó.
tìm x,y sao cho biểu thức :
3x2 + 9y2 - 6xy - 16x - 12y + 2049
đạt GTLN , tìm giá trị đó.
A=3x2 + 9y2 - 6xy - 16x - 12y + 2049
3A=9x2 + 27y2 - 18xy - 48x - 36y + 6147
=(3x-3y-8)2+18y2-84y+6083
=(3x-3y-8)2+2.(3y-7)2+5985>5985
Dấu = xảy ra khi 3y-7=0 và 3x-3y-8=0=>y=7/3 và x=5=>3A=5985=>a=1995
Amin=1995<=>y=7/3 và x=5
mk chỉ tìm được GTNN thôi
Cho \(A=2x^2+9y^2-6xy-6x-12y+2036\)
Tìm x,y để A đạt GTNN. Tìm GTNN đó.
\(A=2x^2+9y^2-6xy-6x-12y+2036\)
\(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)
\(\Rightarrow A\ge2007\)
Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)
bài 1 : tìm x,y sao cho :
A=2x^2 +9y^2-6xy-6x-12y+2014 đạt gtnn ?
B= -x^2+2xy-4y^2+2x+10y-8 đạt gtln ?
bài 2 : tìm các số nguyên x,y không nhỏ hơn 2 soa cho xy-1 chia hết cho (x-1)(y-1)
kí hiệu a l b là a chia hết cho b nhé
xy-1 l (x-1)(y-1) <=> xy-1 l y-1 <=> y(x-1)+y-1 l y-1 => x-1 l y-1
tương tự : y-1 l x-1
=> \(\orbr{\begin{cases}x-1=y-1\\x-1=1-y\end{cases}}\Rightarrow\orbr{\begin{cases}x=y\\x+y=2\end{cases}}\)
+> x=y \(\Rightarrow x^2-1\)l \(\left(x-1\right)^2\) <=> x+1 l x-1 <=> 2 l x-1 => x=2 hoặc x=3
|+> x+y=2 thay vào tương tự như trên nhé