Tìm x:
(3x-1)^3=8/27
Tìm x, biết: (3x-1)3 = (-8)/27
Tìm x, biết:
a) (2x+3)^2=9/121
b) (3x−1)^3=−8/27
a, \(\left(2x^3+3\right)^2=\frac{9}{121}=\left(\pm\frac{3}{11}\right)^2\)
Nếu \(2x+3=\frac{3}{11}\Rightarrow x=-\frac{15}{11}\)
Nếu \(2x+3=-\frac{3}{11}\Rightarrow x=-\frac{18}{11}\)
b,\(\left(3x-1\right)^3=-\frac{8}{27}=\left(-\frac{2}{3}\right)^3\)
\(\Leftrightarrow3x-1=-\frac{2}{3}\Leftrightarrow x=\frac{1}{9}\)
a, (2x+3)^2 = 9/121
=> 2x+3 = \(\sqrt{\frac{9}{121}}\)= \(\frac{3}{11}\)
=>x= \(\frac{\frac{3}{11}-3}{2}\) = \(-\frac{15}{11}\)
b,(3x-1)\(^3\)= \(-\frac{8}{27}\)
=> \(3x-1=\sqrt[3]{-\frac{8}{27}}=-\frac{2}{3}\)
=>\(x=\frac{-\frac{2}{3}+1}{3}=\frac{1}{9}\)
t còn thiếu 1 nghiệm nữa là \(-\frac{18}{11}\)
Tìm x
\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\left(x\ne0\right)\)
\(\left(3x-1\right)^3=\frac{8}{27}\)
\(\left(3x-1\right)^3=\left(\frac{2}{3}\right)^3\)
=> 3x -1 = 2/3
3x = 5/3
x = 5/9
học tốt ^^
\(\left(x^4\right)^2=x^{12-5}\)
\(x^8-x^7=0\)
\(x^7\cdot x-x^7=0\)
\(x^7\cdot\left(x-1\right)=0\)
+) x^7 = 0 => x = 0
+) x -1 = 0 => x = 1
Vậy,...........
học tốt ^^
\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\Rightarrow\left(x^4\right)^2x^5=\frac{x^{12}}{x^5}x^5\Rightarrow x^{13}=x^{12}\)
\(\Rightarrow x=1\)
Tìm x
a) (2x+3)2=9/25
b) (3x-1)3=-1/27
a) \(\left(2x+3\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(2x+3\right)^2=\left(\frac{3}{5}\right)^2\) hoặc \(\left(2x+3\right)^2=\left(-\frac{3}{5}\right)^2\)
\(\Rightarrow2x+3=\frac{3}{5}\) hoặc \(2x+3=-\frac{3}{5}\)
\(\Rightarrow2x=-\frac{12}{5}\) hoặc \(2x=-\frac{18}{5}\)
\(\Rightarrow x=-\frac{6}{5}\) hoặc \(x=-\frac{9}{5}\)
Vậy.......
b) \(\left(3x-1\right)^3=\frac{1}{27}\)
\(\left(3x-1\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow3x-1=\frac{1}{3}\)
\(\Rightarrow3x=\frac{4}{3}\)
\(\Rightarrow x=\frac{4}{9}\)
Vậy.......
a) (2x+3)2=\(\frac{9}{25}\)
2x+3=\(\sqrt{\frac{9}{25}}\)=\(\frac{3}{5}\)
2x=\(\frac{-12}{5}\)
x=\(\frac{-6}{5}\)
b) (3x-1)3=\(\frac{-1}{27}\)
3x-1=\(\frac{-1}{3}\)
3x=\(\frac{2}{3}\)
x=\(\frac{2}{9}\)
a) ( 2x + 3 )2 = \(\frac{9}{25}\)
\(\Rightarrow2x+3=\frac{3}{5}\)hoặc \(-\frac{3}{5}\)
\(\Rightarrow2x=-\frac{12}{5}\)hoặc \(-\frac{18}{5}\)
\(\Rightarrow x=-\frac{6}{5}\)hoặc\(-\frac{9}{5}\)
b) ( 3x - 1)3 = \(-\frac{1}{27}\)
\(\Rightarrow3x-1=-\frac{1}{3}\)
\(\Rightarrow3x=\frac{2}{3}\)
\(\Rightarrow x=\frac{2}{9}\)
1) Cho x:3=y.15 và x+y=-32.Tìm x,y
2)Cho 2x-5y và y-x=-27.Tìm x,y
3) Cho 3x=7y và x.y=189. Tìm x,y
4)Cho 4x=5y và x^2 - y^2=36. Tìm x,y
Mình cần gấp lắm ạ:)))
1) ta có: \(x:3=y.15\Rightarrow x\cdot\frac{1}{3}=y.15\Rightarrow\frac{x}{15}=\frac{y}{\frac{1}{3}}\)
ADTCDTSBN
...
2) bn ghi thiếu đề r
3) ta có: \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)
mà xy = 189 => 7k.3k = 189
21 k2 = 189
k2 = 9 = 32 = (-3)2 => k = 3 hoặc k = - 3
TH1: k = 3
x = 7.3 => x = 21
y = 3.3 => y = 9
...
4) ta có: \(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}\)
ADTCDTSBN
...
Tìm x
a) (3x-4)3=(3x-1)(3x-8x)2
b) (3x)3+ (x-8)(x+8)= (3x-4) (9x2+24x+16)
Hằng đẳng thức :x^2+x+1/4
27+8x^3
-x^3+3x^2-3x+1
8+36x+54x^2+27x^3
\(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{4}\right)^2\)
\(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)
\(-x^3+3x^2-3x+1=\left(-x+1\right)^3\)
Tìm X
A, (X+1)(X+2)(X+5) - X^2(X+8)=27
B, 1/4 X^2-(1/2X-4)1/2X=-14
C, 3(1-4X)(X-1)+4(3X-2)(X+3)=-27
D,(X+3)(X^2-3X+9) - X(X-1)(X+1)=27
Tìm x biết : a.3x.(x+1)-2x.(x+20=-1-x
b.(3x-1).(2x+7)-(x+1).(6x-5)=16
c.(10x+9).x-(5x-1).(2x+3)=8
a) Ta có: \(3x\left(x+1\right)-2x\left(x+20\right)=-1-x\)
\(\Leftrightarrow3x^2+3x-2x^2-40x+1+x=0\)
\(\Leftrightarrow x^2-36x+1=0\)
\(\Leftrightarrow x^2-36x+324-323=0\)
\(\Leftrightarrow\left(x-18\right)^2=323\)
\(\Leftrightarrow\left[{}\begin{matrix}x-18=\sqrt{323}\\x-18=-\sqrt{323}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18+\sqrt{323}\\x=18-\sqrt{323}\end{matrix}\right.\)
Vậy: \(x\in\left\{18+\sqrt{323};18-\sqrt{323}\right\}\)
b) Ta có: \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(\Leftrightarrow6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)-16=0\)
\(\Leftrightarrow6x^2+19x-7-\left(6x^2+x-5\right)-16=0\)
\(\Leftrightarrow6x^2+19x-7-6x^2-x+5-16=0\)
\(\Leftrightarrow18x-18=0\)
\(\Leftrightarrow18x=18\)
hay x=1
Vậy: x=1
c) Ta có: \(\left(10x+9\right)\cdot x-\left(5x-1\right)\left(2x+3\right)=8\)
\(\Leftrightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)-8=0\)
\(\Leftrightarrow10x^2+9x-10x^2-13x+3-8=0\)
\(\Leftrightarrow-4x-5=0\)
\(\Leftrightarrow-4x=5\)
hay \(x=\frac{-5}{4}\)
Vậy: \(x=\frac{-5}{4}\)