Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết

đặt x/3=y/5=k(k khác 0) =>x=3k; y=5k

=> x.y=3k .5k=15.k^2=135

=k^2=135:15=9=3^2 hoặc (-3)^2

 th1:k=3=> x=9;y=15

th2:k=-3=>x=-9;y=-15

T.Ps
14 tháng 6 2019 lúc 17:04

#)Giải :

Đặt \(\frac{x}{3}=\frac{y}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)

\(\Rightarrow xy=3k.5k=135\)

\(\Rightarrow15k^2=135\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3\)

\(\hept{\begin{cases}x=3.3=9\\y=3.5=15\end{cases}}\)

\(\hept{\begin{cases}x=-3.3=-9\\y=-3.5=-15\end{cases}}\)

Vậy x có hai bộ số (x,y) là (9,15) ; (-9,-15)

Trần Chí Công
Xem chi tiết
Tài Nguyễn Tuấn
19 tháng 8 2015 lúc 19:30

Giải.

Theo tỉ lệ thức thì \(x\times5=y\times3=135\)

Vậy \(x=\frac{135}{5}=27;y=\frac{135}{3}=45\)

Bài 2 : Ta có :

\(\frac{a-b}{b}=\frac{a}{b}-\frac{b}{b}=\frac{a}{b}-1;\frac{c-d}{d}=\frac{c}{d}-\frac{d}{d}=\frac{c}{d}-1\)

Mà \(\frac{a}{b}=\frac{c}{d}\)nên \(\frac{a-b}{b}=\frac{c-d}{d}\)

Nao Tomori
19 tháng 8 2015 lúc 19:29

trong sách giáo khoa lớp 7 có 1 bài tương tự như thế, đặt k ra

doremon
19 tháng 8 2015 lúc 19:31

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)(đpcm)

Đào Thị Thảo
Xem chi tiết
Trà My
4 tháng 7 2017 lúc 12:36

Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=>x=27;z=36;z=60

Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)

+)k=-2 => x=-4;y=-5

+)k=2 => x=4;y=5

Vậy x=-4;y=-5 hoặc x=4;y=5

cộng tác viên
Xem chi tiết
Nguyễn Thị Lan Nhi
15 tháng 1 2017 lúc 22:08

a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3  

Trang
Xem chi tiết
Hoàng Nguyễn Khánh Linh
4 tháng 10 2016 lúc 16:10

Bài 1:

 \(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\)  và x + y - z = 10

\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\) 

\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\) 

=> \(\frac{x}{8}=\frac{y}{12}\)  = \(\frac{z}{15}\)             

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2

=> \(\frac{x}{8}\) = 2 --> x = 16

      \(\frac{y}{12}=2\) --> y = 24

      \(\frac{z}{15}=2\) --> z = 30

Vậy x = 16 ; y = 24 ; z = 30

Bài 2: 

               \(\frac{x}{2}=\frac{y}{5}\) và x . y = 10

  Đặt \(\frac{x}{2}=\frac{y}{5}=k\) 

Ta có: x = 2 . k ; y = 5 . k

          x . y = 10 => 2k . 5k = 10

                          => 10 . \(^{k^2}\) = 10

                          => \(^{k^2}\) = 1 --> k = -1 hoặc k = 1

          k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5

          k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5

 

                                                              

Trần Việt Linh
4 tháng 10 2016 lúc 15:45

Bài 1:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Bài 2:

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

Có: xy=10

\(\Leftrightarrow2k\cdot5k=10\)

\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với k=1 thì x=2 ; y=5

Với k=-1 thì x=-2 ; y=-5

 

Nguyen Thi Mai
4 tháng 10 2016 lúc 15:48

Bài 1 :

Ta có:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 

Nên x = 2.8 = 16

      y = 2.12 = 24

      z= 2. 15 = 30

Vậy ...

Bài 2 :

Đặt k =  . Ta có x = 2k, y = 5k

Từ xy=10. suy ra 2k.5k = 10 => 10 k^{2} = 10 => k^{2} = 1 => k = ± 1

Với k = 1 ta được  = 1 suy ra x = 2, y = 5

Với k = - 1 ta được  = -1  suy ra x = -2, y = -5

Nguyễn Thị Kim Anh
Xem chi tiết
phạm phạm
Xem chi tiết
ngyenlekhanh
19 tháng 8 2018 lúc 17:26

ta có \(\frac{x\left(x.y\right)}{y\left(x.y\right)}=\frac{3}{10}:\left(-\frac{3}{50}\right)=-5=\frac{x}{y}\)

\(x=-5y\)suy ra \(-5\left(-5y-y\right)=\frac{3}{10}\)suy ra \(30y^2=\frac{3}{10}\)

nên \(y=\frac{1}{10}\)hoặc \(y=-\frac{1}{10}\)

+) Với \(y=\frac{1}{10}\)suy ra \(x=-5.\frac{1}{10}=-\frac{1}{2}\)

+) Với \(y=-\frac{1}{10}\)suy ra \(x=-5.\left(-\frac{1}{10}\right)=\frac{1}{2}\).

Chúc làm bài may mắn

Trịnh Ngọc Diệp
Xem chi tiết
Cả Út
17 tháng 7 2019 lúc 12:23

\(\frac{x}{5}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

\(x\cdot y=140\)

\(\Rightarrow5k\cdot7k=140\)

\(\Rightarrow35k^2=140\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2\)

\(k=2\Rightarrow\hept{\begin{cases}x=2\cdot5=10\\y=2\cdot7=14\end{cases}}\)

\(k=-2\Rightarrow\hept{\begin{cases}x=-2\cdot5=-10\\y=-2\cdot7=-14\end{cases}}\)

\(7x=3y\)

\(\Rightarrow\frac{x}{3}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=3k\\y=7k\end{cases}}\)

\(\Rightarrow x\cdot y=3k\cdot7k=2100\)

\(\Rightarrow21k^2=2100\)

\(\Rightarrow k^2=100\)

\(\Rightarrow k=\pm10\)

\(k=10\Rightarrow\hept{\begin{cases}x=10\cdot3=30\\y=10\cdot7=70\end{cases}}\)

\(k=-10\Rightarrow\hept{\begin{cases}x=-10\cdot3=-30\\y=-10\cdot7=-70\end{cases}}\)

ran mori
12 tháng 2 2020 lúc 14:08

4x=3y và 3x-y=21

Khách vãng lai đã xóa
Guyễn tuấn tài
31 tháng 3 2020 lúc 13:02

hiiiiiii

Khách vãng lai đã xóa
Nguyễn Thị Hà Vân
Xem chi tiết
Yen Nhi
5 tháng 10 2021 lúc 12:47

Bài 5:

Theo đề ra, ta có:

\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)

Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)

\(\Rightarrow k^2=4\Rightarrow k=\pm2\)

Trường hợp 1: Với \(k=2\)

\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)

\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)

Trường hợp 2: Với \(k=-2\)

\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)

\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)

Khách vãng lai đã xóa
Yen Nhi
5 tháng 10 2021 lúc 12:53

Bài 4:

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)

\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)

\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)

\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)

Khách vãng lai đã xóa
Yen Nhi
5 tháng 10 2021 lúc 12:56

Bài 3:

Theo đề ra, ta có: \(x:y:z=3:8:5\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x+y-2z}{3.3+8-2.5}=2\)

\(\Rightarrow\frac{x}{3}=2\Rightarrow x=3.2=6\)

\(\Rightarrow\frac{y}{8}=2\Rightarrow y=8.2=16\)

\(\Rightarrow\frac{z}{5}=2\Rightarrow z=5.2=10\)

Khách vãng lai đã xóa