Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xử Nữ Họ Nguyễn
Xem chi tiết
Khách vãng lai
Xem chi tiết
tran hoang dang
3 tháng 2 2017 lúc 19:53

mình ko biết xin lỗi bạn nha

mình ko biết xin lỗi bạn nha

mình ko biết xin lỗi bạn nha

mình ko biết xin lỗi bạn nha

mình ko biết xin lỗi bạn nha

Nguyễn Tuấn anh
Xem chi tiết
Yến Nhi
26 tháng 12 2021 lúc 18:58

Answer:

Câu 1:

Số ban đầu \(222...2\) (Gồm mười lăm chữ số 2)

Tổng các chữ số

\(15\times2=30\)

Khi cộng thêm các chữ số 0 vào thì tổng sẽ là 30

=> Chia hết cho 3 nhưng lại không chia hết cho 9

Vậy không còn cách nào để thêm

Câu 2:

Số đó là \(1223334444\)

Tổng các chữ số

\(1+2\times2+3\times3+4\times4=30\)

=> 1223334444 chia hết cho 3

=> Để 1223334444 là số chính phương thì 122333444 chia hết cho 9

Mà 30 thì không chia hết cho 9

Vậy 122333444 không phải là số chính phương.

Khách vãng lai đã xóa
Trần Thị Hoàng My
28 tháng 12 2021 lúc 13:12

1 số tự nhiên chia \(⋮\)k thì phải \(⋮\)k2 
  Gọi số tự nhiên gồm 15 chữ số 2 là a(a \(\in\)N)
Khi thêm các c/s 0 tùy ý vào vị trí thì tổng các c/s của a ko thay đổi và vẫn là 15 . 2=30
1 số có tổng các c/s \(⋮\)3 thì \(⋮\)3
=> Số a hay số mới phải \(⋮\)3
Giả sử có cách viết thêm các c/s 0 vào vị trí tùy ý để số mới tạo thành 1 số chính phương
=> Số mới là 1 số chính phương 
=> Số mới \(⋮\)3 => số mới phải \(⋮\)9
Mà 30 ko chia hết cho 9 => số mới ko chia hết cho 9 (vô lý)
=> giả sử sai 
     Vậy ko có cách nào để viết thêm c/s 0 vào vị trí tùy ý để tạo thành là 1 số chính phương

Khách vãng lai đã xóa
Thánh VĂn Troll
Xem chi tiết
Nguyễn Thị Huyền Trang
31 tháng 1 2017 lúc 21:39

Để \(n^2+2002\) là số chính phương thì \(n^2+2002=a^2\)(a là số tự nhiên khác 0)

\(\Rightarrow a^2-n^2=2002\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Do \(2002⋮2\)\(\Rightarrow\left(a-n\right)\left(a+n\right)⋮2\)hay \(a-n⋮2\)hoặc \(a+n⋮2\)hoặc \(\)a-n và a+n đều\(⋮2\)

mà a-n-(a+n)=-2n \(⋮2\)\(\Rightarrow\)a-n và a+n cùng chẵn hoặc lẻ \(\Rightarrow\) a-n; a+n đều \(⋮2\)\(\Rightarrow\)\(\left(a-n\right)\left(a+n\right)⋮4\)

Mà 2002 ko chia hết cho 4 \(\Rightarrow\)ko tồn tại n đẻ n^2+2002 là số chính phương

Ben10 Đào
12 tháng 12 2018 lúc 12:05

đơngiản tự nghĩ lấy hỏi gì mà hỏi 

caohoangdung
10 tháng 11 2020 lúc 16:37

lêu lêu

Khách vãng lai đã xóa
Phạm Tuấn Kiệt
Xem chi tiết
KIMBERLY LOAN NGUYỄN
5 tháng 4 2016 lúc 22:09

giả sử n +  2002 = a2

 nếu a và n không cùng tính chẵn lẻ 

 a2 - n2  là số lẻ 

 mà 2002 là số chẵn 

 nên nếu a và n không cùng tính chẵn lẻ thì n2 +2002 ko phải là 1 số chính phương 

nếu a và n cùng tính chẵn lẻ thì a và n khác 2002 ( vì 2002 không chia hết cho 4 mà a2 - n2 chia hết cho 4 )

vậy ko có số nào thích hợp 

chelsea
5 tháng 4 2016 lúc 22:06

Gọi số cần tìm là a

ta có n^2+2002=a^2

a^2-n^2=2002

(a-n)(a+n)=2002

do 2002 chia hết cho 2=>a-n hoặc a+n cũng phải chia hết cho 2

mà a-n-(a+n)=-2n chia hết cho 2

=>a-n và a+n là cặp chẵn lẻ=>a-n hay a+n đều chia hết cho 2

mà 2 số đều chia hết cho 2 thì tích của chúng sẽ chia hết cho 4

=>(a-n)(a+n) chia hết cho 4

mà 2002 ko chia hết cho 4

=>ko có số thự nhiên nào để n^2 +2002 là số chính phương

David De gea
Xem chi tiết
hot boy lạnh lùng
23 tháng 3 2019 lúc 22:04

ể n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

caohoangdung
10 tháng 11 2020 lúc 16:37

làm siêu đúng luôn

Khách vãng lai đã xóa
Biokgnbnb
Xem chi tiết
Minh Nguyễn Hữu
26 tháng 1 2015 lúc 12:01

  Gọi số chình phương đó là: b2

  ta có: 2014+ n2=b2

             2014= b2-n2

           2014=(b+n).(b-n)

   nếu n là số lẻ thì n2 là số lẻ nên b2 là số lẻ

   nếu n là số chẵn thì n2 là số chẵn nên b2 là số chẵn

   vậy (b+n) và (b-n) khi chia cho 2 thì đồng dư   (1)

 ta có: 2014=1.2014=2.1007=19.106 ( mẫu thuẫn với (1) )

  nên không có số tự nhiên n để 2014 + n2 là số chính phương.

 

Hà Minh Quang
8 tháng 1 2017 lúc 11:44

cac ban co cach giai khac ko

Lê Phương Linh
1 tháng 2 2017 lúc 16:58

Có nhưng mk sẽ ns cho bn sau bây giờ mk bận rùi

Lê Thị Mai Trang
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
HAIBARA AI
15 tháng 4 2016 lúc 20:30

để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

Hội TDTH_Musa
15 tháng 4 2016 lúc 20:26

Các cách giải trên nói chung là được và mình cũng muốn đóng góp thêm cách này 

Một tính chất của số chính phương: x^2 chia 4 chỉ có thể dư 0 hoặc 1 (bạn tự chứng minh nha) 
Đặt x^2 + 2002 = y^2 

+ Nếu x^2 chia hết cho 4 => x^2 + 2002 chia 4 dư 2 => y^2 chia 4 dư 2, vô lí vì y^2 chia 4 chỉ có thể dư 0 hoặc 1 

+ Nếu x^2 chia 4 dư 1 => x^2 + 2002 chia 4 dư 3 => y^2 chia 4 dư 3, cũng vô lí nôt 

Vậy pt vô nghiệm 

p/s: ko biết bài này có phải trong đề tuyển sinh TP. HCM năm 2002 - 2003 ko ta?

Đúng không Bùi Minh Quân

Hoàng Phúc
15 tháng 4 2016 lúc 20:30

Giả sử n2+2002=a2 (a là số nguyên dương)

Khi đó a2-n2=2002<=>(a+n)(a-n)=2002.Do đó trong 2 số a+n và a-n phải có 1 số chẵn

Mặt khác (a+n)+(a-n)=2a là số chẵn nên 2 số a+n và a-n cùng tính chẵn-lẻ nên 2 số a+n và a-n đều là 2 số chẵn

=>(a+n)(a-n) chia hết cho 4.Nhưng 2002 ko chia hết cho 4

=>điều giả sử là sai

Vậy ko có số tự nhiên n nào để...................