cm: không có số tự nhiên nào để p^2 + 2014 là số chính phương
Có hay không các số tự nhiên n để n^2+2014 là 1 số chính phương
Có hay không số tự nhiên n để 2014 + n2 là số chính phương?
Giúp mình nha các bạn
mình ko biết xin lỗi bạn nha
mình ko biết xin lỗi bạn nha
mình ko biết xin lỗi bạn nha
mình ko biết xin lỗi bạn nha
mình ko biết xin lỗi bạn nha
cho 1 số tự nhiên gồm 15 chữ số 2 có cách nào để viết các chữ số 0 vào vị trí tùy ý để số mới tạo thành là một số chính phương hay không?
câu 2 một số tự nhiên gồm có 1 chữ số 1 , 2 chữ số 2 ,3 chữ số 3,4 chữ số 4 có thể là 1 số chính phương hay không?
Answer:
Câu 1:
Số ban đầu \(222...2\) (Gồm mười lăm chữ số 2)
Tổng các chữ số
\(15\times2=30\)
Khi cộng thêm các chữ số 0 vào thì tổng sẽ là 30
=> Chia hết cho 3 nhưng lại không chia hết cho 9
Vậy không còn cách nào để thêm
Câu 2:
Số đó là \(1223334444\)
Tổng các chữ số
\(1+2\times2+3\times3+4\times4=30\)
=> 1223334444 chia hết cho 3
=> Để 1223334444 là số chính phương thì 122333444 chia hết cho 9
Mà 30 thì không chia hết cho 9
Vậy 122333444 không phải là số chính phương.
1 số tự nhiên chia \(⋮\)k thì phải \(⋮\)k2
Gọi số tự nhiên gồm 15 chữ số 2 là a(a \(\in\)N)
Khi thêm các c/s 0 tùy ý vào vị trí thì tổng các c/s của a ko thay đổi và vẫn là 15 . 2=30
1 số có tổng các c/s \(⋮\)3 thì \(⋮\)3
=> Số a hay số mới phải \(⋮\)3
Giả sử có cách viết thêm các c/s 0 vào vị trí tùy ý để số mới tạo thành 1 số chính phương
=> Số mới là 1 số chính phương
=> Số mới \(⋮\)3 => số mới phải \(⋮\)9
Mà 30 ko chia hết cho 9 => số mới ko chia hết cho 9 (vô lý)
=> giả sử sai
Vậy ko có cách nào để viết thêm c/s 0 vào vị trí tùy ý để tạo thành là 1 số chính phương
Chứng minh rằng không có số tự nhiên n nào để n^2 + 2002 là số chính phương
Để \(n^2+2002\) là số chính phương thì \(n^2+2002=a^2\)(a là số tự nhiên khác 0)
\(\Rightarrow a^2-n^2=2002\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Do \(2002⋮2\)\(\Rightarrow\left(a-n\right)\left(a+n\right)⋮2\)hay \(a-n⋮2\)hoặc \(a+n⋮2\)hoặc \(\)a-n và a+n đều\(⋮2\)
mà a-n-(a+n)=-2n \(⋮2\)\(\Rightarrow\)a-n và a+n cùng chẵn hoặc lẻ \(\Rightarrow\) a-n; a+n đều \(⋮2\)\(\Rightarrow\)\(\left(a-n\right)\left(a+n\right)⋮4\)
Mà 2002 ko chia hết cho 4 \(\Rightarrow\)ko tồn tại n đẻ n^2+2002 là số chính phương
CMR: Không có số tự nhiên n nào để n2+2002 là số chính phương
giả sử n2 + 2002 = a2
nếu a và n không cùng tính chẵn lẻ
a2 - n2 là số lẻ
mà 2002 là số chẵn
nên nếu a và n không cùng tính chẵn lẻ thì n2 +2002 ko phải là 1 số chính phương
nếu a và n cùng tính chẵn lẻ thì a và n khác 2002 ( vì 2002 không chia hết cho 4 mà a2 - n2 chia hết cho 4 )
vậy ko có số nào thích hợp
Gọi số cần tìm là a
ta có n^2+2002=a^2
a^2-n^2=2002
(a-n)(a+n)=2002
do 2002 chia hết cho 2=>a-n hoặc a+n cũng phải chia hết cho 2
mà a-n-(a+n)=-2n chia hết cho 2
=>a-n và a+n là cặp chẵn lẻ=>a-n hay a+n đều chia hết cho 2
mà 2 số đều chia hết cho 2 thì tích của chúng sẽ chia hết cho 4
=>(a-n)(a+n) chia hết cho 4
mà 2002 ko chia hết cho 4
=>ko có số thự nhiên nào để n^2 +2002 là số chính phương
Chứng minh rằng không có số tự nhiên n nào để n2+2002 là số chính phương
ể n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
làm siêu đúng luôn
Tìm số tự nhiên n để M = 2014 + n2 là số chính phương.
Gọi số chình phương đó là: b2
ta có: 2014+ n2=b2
2014= b2-n2
2014=(b+n).(b-n)
nếu n là số lẻ thì n2 là số lẻ nên b2 là số lẻ
nếu n là số chẵn thì n2 là số chẵn nên b2 là số chẵn
vậy (b+n) và (b-n) khi chia cho 2 thì đồng dư (1)
ta có: 2014=1.2014=2.1007=19.106 ( mẫu thuẫn với (1) )
nên không có số tự nhiên n để 2014 + n2 là số chính phương.
Có nhưng mk sẽ ns cho bn sau bây giờ mk bận rùi
1) Tích của 4 số tự nhiên liên tiếp có phải là 1 số chính phương không?
2) Tìm số tự nhiên n có 2 chữ số, biết rằng 2 số 2n+1 và 3n+1 đồng thời là 2 số chính phương.
3) Có hay không số tự nhiên n để
\(2002+n^2\)
là số chính phương?
chứng minh răng không có số tự nhiên n nào để n2+2002 là số chính phương
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
Các cách giải trên nói chung là được và mình cũng muốn đóng góp thêm cách này
Một tính chất của số chính phương: x^2 chia 4 chỉ có thể dư 0 hoặc 1 (bạn tự chứng minh nha)
Đặt x^2 + 2002 = y^2
+ Nếu x^2 chia hết cho 4 => x^2 + 2002 chia 4 dư 2 => y^2 chia 4 dư 2, vô lí vì y^2 chia 4 chỉ có thể dư 0 hoặc 1
+ Nếu x^2 chia 4 dư 1 => x^2 + 2002 chia 4 dư 3 => y^2 chia 4 dư 3, cũng vô lí nôt
Vậy pt vô nghiệm
p/s: ko biết bài này có phải trong đề tuyển sinh TP. HCM năm 2002 - 2003 ko ta?
Đúng không Bùi Minh Quân
Giả sử n2+2002=a2 (a là số nguyên dương)
Khi đó a2-n2=2002<=>(a+n)(a-n)=2002.Do đó trong 2 số a+n và a-n phải có 1 số chẵn
Mặt khác (a+n)+(a-n)=2a là số chẵn nên 2 số a+n và a-n cùng tính chẵn-lẻ nên 2 số a+n và a-n đều là 2 số chẵn
=>(a+n)(a-n) chia hết cho 4.Nhưng 2002 ko chia hết cho 4
=>điều giả sử là sai
Vậy ko có số tự nhiên n nào để...................