Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lưu minh anh

Những câu hỏi liên quan
Tôi Là Ai
Xem chi tiết
Nguyễn Minh Phương
Xem chi tiết
Trần Thanh Phương
12 tháng 4 2019 lúc 6:20

Xét \(x=0\)không thỏa mãn pt

Chia cả tử và mẫu của 2 phân số cho x ta được :

\(\frac{4}{4x-8+\frac{7}{x}}+\frac{3}{4x-10+\frac{7}{x}}=1\)

Đặt \(4x+\frac{7}{x}-9=a\)

\(pt\Leftrightarrow\frac{4}{a+1}+\frac{3}{a-1}=1\)

\(\Leftrightarrow\frac{4\left(a-1\right)+3\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}=1\)

\(\Leftrightarrow4a-4+3a+3=\left(a-1\right)\left(a+1\right)\)

\(\Leftrightarrow7a-1=a^2-1\)

\(\Leftrightarrow a^2-1-7a+1=0\)

\(\Leftrightarrow a\left(a-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=7\end{cases}}\)

Thay a vào tiếp tục giải pt là xong

Nguyễn Đinh Thùy Trang
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2019 lúc 15:27

ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)

\(\Leftrightarrow\frac{4}{4x-8+\frac{7}{x}}+\frac{3}{4x-10+\frac{7}{x}}=1\)

Đặt \(4x-8+\frac{7}{x}=a\) phương trình trở thành:

\(\frac{4}{a}+\frac{3}{a-2}=1\) \(\Leftrightarrow a\left(a-2\right)=4\left(a-2\right)+3a\)

\(\Leftrightarrow a^2-9a+8=0\Rightarrow\left[{}\begin{matrix}a=1\\a=8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-8+\frac{7}{x}=1\\4x-8+\frac{7}{x}=8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x^2-9x+7=0\left(vn\right)\\4x^2-16x+7=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{7}{2}\end{matrix}\right.\)

Nguyễn Thu Hà
Xem chi tiết
Hoàng Minh Hoàng
9 tháng 8 2017 lúc 8:11

PP chung ở cả 3 câu,nói ngắn gọn nhé:

Chứng mình x khác 0,hay nói cách khác x=0 không là nghiệm của phương trình.

Chia cả tử và mẫu cho x ,rồi giải bình thường bằng cách đặt ẩn phụ.

Vd ở câu a>>>4/(4x-8+7/x)+3/(4x-10+7/x)=1.Sau đó đặt 4x+7/x=a>>>4/(a-8)+3/(a-10)=1>>>giải bình thường,các câu sau tương tự

tam mai
Xem chi tiết
Kim Trân Ni
Xem chi tiết
Kiệt Nguyễn
27 tháng 11 2019 lúc 19:44

\(\frac{64x^3+1}{16x^2-1}=\frac{A}{4x-1}\left(x\ne\pm\frac{1}{4}\right)\)

\(\Leftrightarrow\frac{\left(4x+1\right)\left(16x^2+4x+1\right)}{\left(4x+1\right)\left(4x-1\right)}=\frac{A}{4x-1}\)

\(\Leftrightarrow\frac{\left(16x^2+4x+1\right)}{\left(4x-1\right)}=\frac{A}{4x-1}\)

Vậy \(A=\left(16x^2+4x+1\right)\)

Khách vãng lai đã xóa
Kiệt Nguyễn
27 tháng 11 2019 lúc 19:47

\(\frac{4x^2+3x-7}{B}=\frac{4x+7}{2x-3}\left(x\ne\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{4x^2+7x-4x-7}{B}=\frac{4x+7}{2x-3}\)

\(\Leftrightarrow\frac{x\left(4x+7\right)-\left(4x+7\right)}{B}=\frac{4x+7}{2x-3}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{B}=\frac{4x+7}{2x-3}\)

\(\Leftrightarrow\frac{\left(x-1\right)}{B}=\frac{1}{2x-3}\)

\(\Leftrightarrow B=\left(x-1\right)\left(2x-3\right)=2x^2-5x+3\)

Khách vãng lai đã xóa
Tieu Ho Diep
Xem chi tiết
Nguyễn Nguyễn Gia Kiệt
Xem chi tiết
some one
28 tháng 3 2020 lúc 11:27

\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{10-4x^2}{4x^2-9}\)

\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{10-4x^2}{\left(2x-3\right)\left(2x+3\right)}\)

\(\frac{\left(x-1\right)\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}-\frac{\left(3x+7\right)\left(2x+3\right)}{\left(2x+3\right)\left(2x-3\right)}=\frac{10-4x^2}{\left(2x+3\right)\left(2x-3\right)}\)

2x2-3x-2x+3-(6x2+9x+14x+21)=10-4x2

2x2-3x-2x+3-6x2-9x-14x-21=10-4x2

2x2-3x-2x+3-6x2-9x-14x-21-10+4x2=0

2x2-6x2+4x2-3x-2x-9x-14x+3-21-10=0

-28x-28=0

-28x=28

x=28:(-28)

x=-1

Khách vãng lai đã xóa
Vị thần toán hc
31 tháng 3 2020 lúc 14:00

\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{-4x^2+10}{4x^2-9}\)

\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{-2\left(2x^2-5\right)}{4x^2-9}\)

\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{-4x^2+10}{\left(2x+3\right)\left(2x-3\right)}\)

\(-4x^2-28x-18=-4x^2+10\)

\(-4x^2-28x-18+4x^2-10=0\)

\(-28x-28=0\)

\(-28x=28\)

\(x=-1\)

Khách vãng lai đã xóa
Lạnh Lùng Thì Sao
Xem chi tiết
Nguyễn Nhật Minh
9 tháng 12 2015 lúc 8:26

\(\frac{\left(4x-7\right)\left(x+1\right)}{A}=\frac{4x-7}{2x+3}\Leftrightarrow A=\left(2x+3\right)\left(x+1\right)=2x^2+5x+3\)

Không quan tâm
9 tháng 12 2015 lúc 8:25

khó quá chưa thấy đề nào như này

Xem chi tiết
Trần Thanh Phương
22 tháng 2 2019 lúc 22:12

b) \(\frac{4x}{4x^2-8x+7}+\frac{5x}{4x^2-10x+7}=1\)

Giả sử x = 0 ta có :

\(0+0=1\)( vô lý )

=> \(x\ne0\)

Chia cả tử và mẫu của 2 phân thức cho x ta được :

\(\frac{4x:x}{\left(4x^2-8x+7\right):x}+\frac{5x:x}{\left(4x^2-10x+7\right):x}=1\)

\(\Leftrightarrow\frac{4}{4x-8+\frac{7}{x}}+\frac{5}{4x-10+\frac{7}{x}}=1\)

Đặt \(a=4x+\frac{7}{x}-9\)

\(\Leftrightarrow\frac{4}{a+1}+\frac{5}{a-1}=1\)

\(\Leftrightarrow\frac{4\left(a-1\right)+5\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}=\frac{a^2-1}{a^2-1}\)

\(\Rightarrow9a+1=a^2-1\)

\(\Leftrightarrow a^2-9a-2=0\)

Tự giải tiếp 

Trần Thanh Phương
22 tháng 2 2019 lúc 22:26

b) \(\frac{x^4+4}{x^2-2}=5x\)

\(\Leftrightarrow x^4+4=5x\left(x^2-2\right)\)

\(\Leftrightarrow x^4+4-5x^3+10x=0\)

\(\Leftrightarrow x^4-2x^3-3x^3+6x^2-6x^2+12x-2x+4=0\)

\(\Leftrightarrow x^3\left(x-2\right)-3x^2\left(x-2\right)-6x\left(x-2\right)-2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-3x^2-6x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+x^2-4x^2-4x-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+1\right)-4x\left(x+1\right)-2\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-4x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

\(x^2-4x-2=0\)

\(\Leftrightarrow x^2-4x+4-6=0\)

\(\Leftrightarrow\left(x-2\right)^2=\left(\pm\sqrt{6}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}+2\\x=-\sqrt{6}+2\end{cases}}\)

Vậy....

Pham Van Hung
22 tháng 2 2019 lúc 22:27

\(\frac{x^4+4}{x^2-2}=5x\left(ĐKXĐ:x\ne\sqrt{2},x\ne-\sqrt{2}\right)\)

\(\Rightarrow x^4+4=5x\left(x^2-2\right)\)

\(\Leftrightarrow x^4-5x^3+10x+4=0\)

\(\Leftrightarrow x^3\left(x+1\right)-6x^2\left(x+1\right)+6x\left(x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-6x^2+6x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-4x\left(x-2\right)-2\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-4x-2\right)=0\)

Từ đó tìm được tập nghiệm của pt là \(S=\left\{-1;2;\sqrt{6}+2;-\sqrt{6}+2\right\}\)