Những câu hỏi liên quan
lethienduc
Xem chi tiết
Mai Trung Nguyên
4 tháng 3 2020 lúc 15:21

\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)

=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)

Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^


 

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
6 tháng 4 2020 lúc 9:31

Đặt . Do đó . Cần chứng minh:

Or $3(x^2+y^2)^2 -(x^2+y^2)+4x^2 y^2 \geqq  \frac{1}{2} \sqrt{3(x^4+y^4)+10x^2 y^2}  $

Bình phương 2 vế và xét hiệu, ta cần chứng minh:

$ \left( 1/4-xy \right)  \left( 256\, \left( 1/4-xy \right) ^{3}+64\,
 \left( 1/4-xy \right) ^{2}+5-16\,xy \right)\geqq 0$

Đó là điều hiển nhiên vì: $xy \leqq 1/4 (x+y)^2 =1/4$

Done.

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Trung Kiên
6 tháng 4 2020 lúc 16:30

eos bieets

Bình luận (0)
 Khách vãng lai đã xóa
Lê Thành An
Xem chi tiết
supernub
4 tháng 1 2020 lúc 16:32

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:

Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
Bình luận (0)
 Khách vãng lai đã xóa
supernub
4 tháng 1 2020 lúc 16:32

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:

Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
Bình luận (0)
 Khách vãng lai đã xóa
Phạm Thị Huyền Trang
Xem chi tiết
HD Film
13 tháng 8 2020 lúc 11:14

\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)

\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)

\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)

\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)

\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

Vậy VT = VP, đẳng thức được chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
Nhâm Thị Ngọc Mai
Xem chi tiết
Phước Nguyễn
12 tháng 3 2017 lúc 8:51

Ta có:

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)

Suy ra  \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:

\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)

Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy:   \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)

\(\Rightarrow\)  \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\)  (do  \(a,b,c>0\)  )

nên   \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

\(\Rightarrow\) \(đpcm\)

Bình luận (0)
Minh
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Nhóc vậy
Xem chi tiết
Nguyen Thi Phuong Anh
25 tháng 12 2017 lúc 14:15

gia thiet la = chu nhi, sao lai +.neu la bag thi ban nhan cheo roi phan h thanh nhan tu.(a+b)(c+b)(c+a)=0 thay vao la ra 

Bình luận (0)
Nguyễn Bá Huy h
Xem chi tiết
Edogawa Conan
9 tháng 6 2021 lúc 23:32

Ta có: \(\frac{a^2+1}{c^2a^2}=\frac{1}{c^2}+\frac{1}{a^2c^2}=\frac{1}{c^2}+b^2\)

CMTT: \(\frac{b^2+1}{a^2b^2}=\frac{1}{a^2}+c^2\)

\(\frac{c^2+1}{b^2c^2}=\frac{1}{b^2}+a^2\)

=> \(\frac{a^2+1}{c^2a^2}+\frac{b^2+1}{a^2b^2}+\frac{c^2+1}{b^2c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+a^2+b^2+c^2\)

Áp dụng bđt: x2 + y2 + z2 \(\ge\)xy + yz + xz

CM đúng: <=> (x - y)2 + (y - z)2 + (z - x)2 \(\ge\)0 (luôn đúng với mọi x,y, z)

Do đó: \(\frac{a^2+1}{c^2a^2}+\frac{b^2+1}{a^2b^2}+\frac{c^2+1}{b^2c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+ab+bc+ac=a+b+c+ab+bc+ac\)

\(=a\left(b+1\right)+b\left(c+1\right)+c\left(a+1\right)\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
alibaba nguyễn
31 tháng 3 2021 lúc 13:53

Đề phải là số thực không âm mới đúng

Bình luận (0)
 Khách vãng lai đã xóa