Cho a và b là 2 số tự nhiên khác 0 sao cho a+1/b + b+1/a co giá trị là số tự nhiên. Gọi d là ƯCLN của a và b. Chứng minh a+b>d^2
Giúp mình với!
Biết a, b là các số tự nhiên khác 0 sao cho \(\frac{a+1}{b}+\frac{b+1}{a}\) có giá trị là số tự nhiên. Gọi d là ƯCLN a và b. Chứng minh rằng: a+b \(\ge\) d2.
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath
Cho a,b là các số tự nhiên khác 0 sao cho (a+1)/b+(b+1)/a là số tự nhiên. Gọi d= ƯCLN(a,b). chứng minh rằng a+b>=d^2
Đặt \(X=\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+b^2+a+b}{ab}\)
Vì X là số tự nhiên => \(a^2+b^2+a+b⋮ab\)
Vì d=UCLN(a,b) => \(a⋮d\) và \(b⋮d\)=> \(ab⋮d^2\)
=> \(a^2+b^2+a+b⋮d^2\)
Lại vì \(a⋮d\) và \(b⋮d\) => \(a^2⋮d^2\) và \(b^2⋮d^2\) => \(a^2+b^2⋮d^2\)
=> \(a+b⋮d^2\)
=> \(a+b\ge d^2\) (đpcm)
Cho các số tự nhiên a, b sao cho a+1/b + b+1/a có giá trị là số tự nhiên. Gọi d là ƯCLN của a và b. CMR a+b >= d^2
Biết a, b là các số tự nhiên khác 0 sao cho \(\frac{a+1}{b}+\frac{b+1}{a}\) có giá trị là số tự nhiên. Gọi d là ƯCLN a và b. Chứng minh rằng: a+b \(\ge\) d2.
Đặt \(A=\frac{a+1}{b}+\frac{b+1}{a}=\left(\frac{a+1}{b}+1\right)+\left(\frac{b+1}{a}+1\right)-2=\left(a+b+1\right)\left(\frac{1}{a}+\frac{1}{b}\right)-2\)
Vì A có giá trị là một số tự nhiên nên \(\frac{1}{a}+\frac{1}{b}\) phải có giá trị là số tự nhiên hay
\(\frac{a+b}{ab}\) là một số tự nhiên \(\Rightarrow\left(a+b\right)⋮ab\)
Vì d là ƯCLN(a,b) nên \(a=dm,b=dn\) \(\Rightarrow\begin{cases}a+b=d\left(m+n\right)\\ab=d^2mn\end{cases}\) (m,n thuộc N)
\(\Rightarrow\frac{a+b}{ab}=\frac{d\left(m+n\right)}{d^2mn}=\frac{m+n}{dmn}\)
=> (m+n) chia hết cho dmn \(\Rightarrow m+n\ge d\)
\(\Rightarrow d\left(m+n\right)\ge d^2\) hay \(a+b\ge d^2\)
Cho các số tự nhiên a,b sao cho a+1/b + b+1/a có giá trị là số tự nhiên. Gọi d là ƯCLN(a,b) . Chứng minh rằng a+b lớn hơn hoặc bằng d2
Cho các số tự nhiên a,b(a,b khác 0) sao cho a+1/b+b+1/a có giá trị là số tự nhiên.Gọi d là ước chung lớn nhất của a và b . Chứng minh rằng a+bl lớn hơn hoặc bằng d mũ 2
trọn hết giây cuối cùng, hưởng thụ trước khi chết
mik sẽ vặn ngược kim đồng hồ trở lại trc công nguyên
cho các số a,b sao cho (a+1)/b+(b+1)/a có giá trị là số tự nhiên. gọi d là ước chung lớn nhất của a và b. Chứng minh rằng a+b bế hơn hoặc bằng d^2
Đặt
X
=
a
+
1
b
+
b
+
1
a
=
a
2
+
b
2
+
a
+
b
a
b
Vì X là số tự nhiên =>
a
2
+
b
2
+
a
+
b
⋮
a
b
Vì d=UCLN(a,b) =>
a
⋮
d
và
b
⋮
d
=>
a
b
⋮
d
2
=>
a
2
+
b
2
+
a
+
b
⋮
d
2
Lại vì
a
⋮
d
và
b
⋮
d
=>
a
2
⋮
d
2
và
b
2
⋮
d
2
=>
a
2
+
b
2
⋮
d
2
=>
a
+
b
⋮
d
2
=>
a
+
b
≥
d
2
(đpcm)
1) Viết dạng tổng quát cảu số tự nhiên chia 5 dư 1 chia 7 dư 5. Tìm số nhỏ nhất
2) Biết a,b là các số tự nhiên khác 0 và a+1/b và b+1/a có gái trị là số tự nhiên. Gọi d là ƯCLN của a,b. Chứng minh rằng a+b ngỏ hơn hoặc bằng b^2
3) Cho 2016 số tự nhiên: a1,a2,a3,...,a2016. Chứng minh rằng trong 2016 số tự nhiên ấy tồn tại 1 số hoặc tồn tại 1 vài số chia hết cho 2016
4) Cho góc xOy và góc yOz kề bù sao cho góc xOy bằng 4 lần yOz.
a) Tính số đo mỗi góc trên hình vẽ
b) Vẽ tia Ot sao cho góc xOt bằng 108 độ. Tính góc tOy
Cho các số tự nhiên a,b sao cho (a+1/b )+(b+1/a) có giá trị là số tự nhiên.Gọi d là ƯCLN(a;b) .Chứng tỏ rằng a+b > hoăc= d^2