Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hdHải
Xem chi tiết
Akai Haruma
10 tháng 9 2023 lúc 23:58

Bài 1:

$A=2x^2+y^2-2xy+x+2=(x^2+y^2-2xy)+(x^2+x+\frac{1}{4})+\frac{7}{4}$

$=(x-y)^2+(x+\frac{1}{2})^2+\frac{7}{4}$

Vì $(x-y)^2\geq 0; (x+\frac{1}{2})^2\geq 0$ với mọi $x,y$

$\Rightarrow A\geq 0+0+\frac{7}{4}=\frac{7}{4}$
Vậy $A_{\min}=\frac{7}{4}$. Giá trị này đạt được khi $x-y=x+\frac{1}{2}=0$

$\Leftrightarrow x=y=\frac{-1}{2}$

Akai Haruma
11 tháng 9 2023 lúc 0:00

Bài 2:

$B=x^2+9y^2+4z^2-2x+12y-4z+20$

$=(x^2-2x+1)+(9y^2+12y+4)+(4z^2-4z+1)+14$

$=(x-1)^2+(3y+2)^2+(2z-1)^2+14$
Vì $(x-1)^2\geq 0; (3y+2)^2\geq 0; (2z-1)^2\geq 0$ với mọi $x,y,z$

$\Rightarrow B\geq 0+0+0+14=14$

Vậy $B_{\min}=14$. Giá trị này đạt được khi $x-1=3y+2=2z-1=0$

$\Leftrightarrow x=1; y=\frac{-2}{3}; z=\frac{1}{2}$

Akai Haruma
11 tháng 9 2023 lúc 0:02

Bài 3:

$C=-x^2-26y^2+10xy-20y-150$
$-C=x^2+26y^2-10xy+20y+150$

$=(x^2+25y^2-10xy)+(y^2+20y+10^2)+50$

$=(x-5y)^2+(y+10)^2+50$
Vì $(x-5y)^2\geq 0; (y+10)^2\geq 0$ với mọi $x,y$

$\Rightarrow -C=(x-5y)^2+(y+10)^2+50\geq 0+0+50=50$

$\Rightarrow C\leq -50$

Vậy $C_{\max}=-50$. Giá trị này đạt được khi $x-5y=y+10=0$

$\Leftrightarrow y=-10; x=-50$

Hong Nhi Phan
Xem chi tiết
Trần Trung Hiêu
Xem chi tiết
Ly Ly
7 tháng 8 2017 lúc 11:05

Ta có : x+ 9y2 + 4z2 - 2x + 12y - 4z + 20 = 0

    => ( x2 - 2x +1 ) + ( 9y2 + 12y + 4 ) + ( 4z2 - 4z +1 ) + 14 = 0

    => ( x - 1 )2  +  ( 3y + 2 )2  +  ( 2z - 1 )2  +  14  = 0

Mà  :  

( x - 1 )2     >= 0( 3y + 2 )2  >= 0( 2z - 1 )2    >= 0

Suy ra :  ( x - 1 )2  +  ( 3y + 2 )2  +  ( 2z - 1 )2   >= 0

         => ( x - 1 )2  +  ( 3y + 2 )2  +  ( 2z - 1 )2   +  14  >=  14

Mặt khác :   ( x - 1 )2  +  ( 3y + 2 )2  +  ( 2z - 1 )2   +  14 =  x+ 9y2 + 4z2 - 2x + 12y - 4z + 20  = 0  ( Vô lí )

Vậy : Không có giá trị x , y, z nào thỏa mãn 

Trần Trung Hiêu
Xem chi tiết
Đinh Đức Hùng
7 tháng 8 2017 lúc 9:46

\(x^2+9y^2+4z^2-2x+12y-4z+20=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\)(1)

Ta thấy\(\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\forall x;y;z\)

Nên dấu (1) không thể xảy ra , Hay \(x;y;z\) ko tồn tại (đpcm)

Trần Công Hưng
Xem chi tiết
Khê Lâm Mộ (Tiểu Ngữ)
Xem chi tiết
Trần Thị Linh Nhi
Xem chi tiết
trần thị linh nhi
Xem chi tiết
Akai Haruma
6 tháng 1 lúc 23:14

Biểu thức không có giá trị nhỏ nhất nhé. Bạn xem lại đã viết biểu thức đúng chưa nhỉ?

Phí Quỳnh Anh
Xem chi tiết