tìm giá trị nhỏ nhất của biểu thức
C=x^2+9y^2+4z^2+12y-4z+20
Tìm GTLN (hoặc nhỏ nhất)
A=2x^2+y^2-2xy+x+2
B=x^2+9y^2+4z^2-2x+12y-4z+20
C=-x^2 -26y^2+10xy-20y-150
Bài 1:
$A=2x^2+y^2-2xy+x+2=(x^2+y^2-2xy)+(x^2+x+\frac{1}{4})+\frac{7}{4}$
$=(x-y)^2+(x+\frac{1}{2})^2+\frac{7}{4}$
Vì $(x-y)^2\geq 0; (x+\frac{1}{2})^2\geq 0$ với mọi $x,y$
$\Rightarrow A\geq 0+0+\frac{7}{4}=\frac{7}{4}$
Vậy $A_{\min}=\frac{7}{4}$. Giá trị này đạt được khi $x-y=x+\frac{1}{2}=0$
$\Leftrightarrow x=y=\frac{-1}{2}$
Bài 2:
$B=x^2+9y^2+4z^2-2x+12y-4z+20$
$=(x^2-2x+1)+(9y^2+12y+4)+(4z^2-4z+1)+14$
$=(x-1)^2+(3y+2)^2+(2z-1)^2+14$
Vì $(x-1)^2\geq 0; (3y+2)^2\geq 0; (2z-1)^2\geq 0$ với mọi $x,y,z$
$\Rightarrow B\geq 0+0+0+14=14$
Vậy $B_{\min}=14$. Giá trị này đạt được khi $x-1=3y+2=2z-1=0$
$\Leftrightarrow x=1; y=\frac{-2}{3}; z=\frac{1}{2}$
Bài 3:
$C=-x^2-26y^2+10xy-20y-150$
$-C=x^2+26y^2-10xy+20y+150$
$=(x^2+25y^2-10xy)+(y^2+20y+10^2)+50$
$=(x-5y)^2+(y+10)^2+50$
Vì $(x-5y)^2\geq 0; (y+10)^2\geq 0$ với mọi $x,y$
$\Rightarrow -C=(x-5y)^2+(y+10)^2+50\geq 0+0+50=50$
$\Rightarrow C\leq -50$
Vậy $C_{\max}=-50$. Giá trị này đạt được khi $x-5y=y+10=0$
$\Leftrightarrow y=-10; x=-50$
tìm giá trị nhỏ nhất của biểu thức: 9x2+12xy-12xz+6x+8y2+4yz+12y+17z2+4z+14
CMR ko có số xyz thỏa mãn
x^2+9y^2+4z^2-2x+12y-4z+20=0
Ta có : x2 + 9y2 + 4z2 - 2x + 12y - 4z + 20 = 0
=> ( x2 - 2x +1 ) + ( 9y2 + 12y + 4 ) + ( 4z2 - 4z +1 ) + 14 = 0
=> ( x - 1 )2 + ( 3y + 2 )2 + ( 2z - 1 )2 + 14 = 0
Mà :
( x - 1 )2 >= 0( 3y + 2 )2 >= 0( 2z - 1 )2 >= 0Suy ra : ( x - 1 )2 + ( 3y + 2 )2 + ( 2z - 1 )2 >= 0
=> ( x - 1 )2 + ( 3y + 2 )2 + ( 2z - 1 )2 + 14 >= 14
Mặt khác : ( x - 1 )2 + ( 3y + 2 )2 + ( 2z - 1 )2 + 14 = x2 + 9y2 + 4z2 - 2x + 12y - 4z + 20 = 0 ( Vô lí )
Vậy : Không có giá trị x , y, z nào thỏa mãn
CMR ko có số x,y,z thỏa mãn
x^2+9y^2+4z^2-2x+12y-4z+20=0
\(x^2+9y^2+4z^2-2x+12y-4z+20=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\)(1)
Ta thấy\(\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\forall x;y;z\)
Nên dấu (1) không thể xảy ra , Hay \(x;y;z\) ko tồn tại (đpcm)
Cho x,y,z là 3 số thực dương và thỏa mãn: 4x^2 + 9y^2 + 16z^2 = 1.Tìm giá trị nhỏ nhất của A = 2x / (9y^2 + 16z^2) + 3y / (4x^2 + 16 z^2) + 4z / (4x^2 + 9y^2)
tìm giá trị nhỏ nhất của biểu thức B=x^2+5y^2-4xy-4yz-4z+12
Tìm giá trị nhỏ nhất của biểu thức B=x^2+5y^2-4xy-4yz-4z+12
tìm giá trị nhỏ nhất của biểu thức B=x^2+5y^2-4xy-4yz-4z+12
Biểu thức không có giá trị nhỏ nhất nhé. Bạn xem lại đã viết biểu thức đúng chưa nhỉ?
Tìm x,y sao cho biểu thức A=\(2x^2+9y^2-6xy-6x-12y+2024\)đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó.