Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
shinichi

Những câu hỏi liên quan
Nguyễn Minh Ngọc
Xem chi tiết
Xyz OLM
4 tháng 8 2020 lúc 12:09

\(E=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{49.49}\)

Ta có \(\frac{1}{2.2}>\frac{1}{2.3}\)

\(\frac{1}{3.3}>\frac{1}{3.4}\)

...

\(\frac{1}{49.49}>\frac{1}{49.50}\)

=> \(E=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{49.49}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{2}-\frac{1}{50}=\frac{24}{50}=\frac{12}{25}=F\)

=> E > F

Khách vãng lai đã xóa
Nguyễn Gia Linh
5 tháng 3 2023 lúc 16:52

Xyz olm ơi . là j vậy

Phan Diệu Anh
Xem chi tiết
Nguyễn Ngọc Anh Minh
11 tháng 7 2023 lúc 8:33

Số số hạng của phép tính là \(\dfrac{\left(49-1\right)}{2}+1=25\) số hạng

\(K=1x\left(100-1\right)+3x\left(100-3\right)+5x\left(100-5\right)+...+49x\left(100-49\right)=\)

\(=100x\left(1+3+5+...+49\right)-\left(1^2+3^2+5^2+...+49^2\right)=\)

Đặt

\(A=1+3+5+...+49\)

\(B=1^2+3^2+5^2+...+49^2\)

\(B=1x\left(3-2\right)+3x\left(5-2\right)+5\left(7-2\right)+...+49x\left(51-2\right)=\)

\(1x3+3x5+5x7+...+49x51-2\left(1+3+5+...+49\right)=\)

\(K=100xA-B=102xA-\left(1x3+3x5+5x7+...+49x51\right)=\)

A là cấp số cộng có 25 số hạng; d=2

Đặt

 \(C=1x3+3x5+5x7+...+49x51\)

\(6xC=1x3x\left(5+1\right)+3x5x\left(7-1\right)+5x7x\left(9-3\right)+...+49x51x\left(53-47\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9+...-47.49.51+49.51.53=\)

\(=1.3+49x51x53\Rightarrow C=\dfrac{1.3+49.51.53}{6}\)

Bạn tự tính toán nốt nhé

Nguyễn Thanh Huyền
Xem chi tiết
sad
Xem chi tiết
sad
Xem chi tiết
nga xuong ruong
Xem chi tiết
nga xuong ruong
15 tháng 2 2016 lúc 19:43

ai tra loi nhanh nhat se duoc k

co ca cach giai nha cac ban

Lê Minh Đức
Xem chi tiết
Đào Đức Mạnh
6 tháng 8 2015 lúc 16:06

\(\frac{3}{1x3}+\frac{3}{3x5}+...+\frac{3}{49x51}=\frac{3}{2}\left(\frac{2}{1x3}+\frac{2}{3x5}+...+\frac{2}{49x51}\right)=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)

nguyen quang trung
Xem chi tiết
Ngoc Han ♪
1 tháng 2 2020 lúc 17:23

\(S=\frac{4}{1\times3}+\frac{16}{3\times5}+\frac{36}{5\times7}+...+\frac{2500}{49\times51}\)

\(=\frac{1\times3+1}{1\times3}+\frac{3\times5+1}{3\times5}+\frac{5\times7+1}{5\times7}+...+\frac{49\times51+1}{49\times51}\)

\(=\frac{1\times3}{1\times3}+\frac{1}{1\times3}+\frac{3\times5}{3\times5}+\frac{1}{3\times5}+\frac{5\times7}{5\times7}+\frac{1}{5\times7}+...+\frac{49\times51}{49\times51}+\frac{1}{49\times51}\)

\(=1+\frac{1}{1\times3}+1+\frac{1}{3\times5}+1+\frac{1}{5\times7}+...+\frac{1}{49\times51}\) (  Có : \(\left(51-3\right)\div2+1=25\)chữ số 1 )

\(=25+\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{49\times51}\)

\(=25+\frac{1}{2}\times\left(1-\frac{1}{3}\right)+\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}\times\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}\times\left(\frac{1}{49}-\frac{1}{51}\right)\)

\(=25+\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=25+\frac{1}{2}\times\left(1-\frac{1}{51}\right)\)

\(=25+\frac{1}{2}\times\frac{50}{51}\)

\(=25+\frac{25}{51}\)

\(=\frac{1300}{51}\)

Khách vãng lai đã xóa
.
1 tháng 2 2020 lúc 16:37

\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+...+\frac{2500}{49.51}\)

\(=\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+...+\frac{2500}{2499}\)

\(=1+\frac{1}{3}+1+\frac{1}{15}+1+\frac{1}{35}+...+1+\frac{1}{2499}\)

\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2500}\right)\)

\(=25+\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{35}+...+\frac{1}{2499}\right)\)

Đặt \(A=\frac{1}{3}+\frac{1}{5}+\frac{1}{35}+...+\frac{1}{2499}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(=1-\frac{1}{51}=\frac{50}{51}\)

\(\Rightarrow S=25+\frac{50}{51}=\frac{1325}{51}\)

Vậy S=\(\frac{1325}{51}\)

Khách vãng lai đã xóa
ninhquanganh
Xem chi tiết
Đức Phạm
6 tháng 7 2017 lúc 20:30

Đặt \(S=\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{3}{49\cdot51}\)

\(S=\frac{3}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)

\(S=\frac{3}{2}\cdot\left(1-\frac{1}{51}\right)\)

\(\Rightarrow S=\frac{3}{2}\cdot\frac{50}{51}=\frac{3\cdot50}{2\cdot51}=\frac{150}{102}=\frac{25}{17}\)