a)x^3.(z-y^2)+y^3.(x-z^2)+z^z^3.(y-x^2)+xyz.(xyz-1)
Cac ban lam dj mk tick cho!!
Cho x*2-y=a , y*2-z=b, z*2-x=c
C/M:P=x*3(z-y*2)+y*3(x-z*2)+z*3(y-x*2)+xyz(xyz+1) không phụ thuộc vào giá trị của x,y,z.
x^3(y+z^2) +y^3(z+x^2) +z^3(x+y^2) +xyz(xyz+1)
a) (x+y)(x^2-y^2)+(y+z)(y^2-z^2)+(z+x)(z^2-x^2)
b) x^3(y-z)+y^3(z-x)+z^3(x-y)
c)x^3(z-y)+y^3(x-z)+z^3(y-z)+xyz(xyz-1)
Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}x^3+y^3+x^2\left(y+z\right)=xyz+14\\y^3+z^3+y^2\left(x+z\right)=xyz-21\\z^3+x^3+z^2\left(x+y\right)=xyz+7\end{cases}}\)
b)\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}}\)
Bài b nhé bạn!
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)
Trừ lại từng phương trình trong hệ:
\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)
Chia lại từng phương trình trong hệ mới, được:
\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)
Xong rồi đó!!!
Cho x^2-y=a ; y^2-z=b ;z^2-x=c
(a,b,c là các hằng số cho trước)
CMR :giá trị biểu thức sau không phụ thuộc vào x , y ,z
P=x^3(z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
Cho các số thực x ; y ; z thỏa mãn x^2-y=a ; y^2-z=b ; z^2-x=c .Tính giá trị biểu thức sau theo a; b; c.
P=x^3 (z-y^2) + y^3 (x-z^2) + z^3 (y-x^2) + xyz (xyz-1)
Cho x^2-y=a
y^2-z=b
z^2-x=c
CMR: Giá trị biểu thức sau ko phụ thuộc vào biến
P=x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
P = x^3 (z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
= -x^3 (y^2-z) +y^3x-y^3z^2 +z^3y-z^3x^2+x^2y^2z^2-xyz
= -x^3 (y^2-z)+(y^3x-xyz)-(y^3z^2-z^3y)+(x^2y^2...
= -x^3 (y^2-z)+xy(y^2-z)-yz^2(y^2-z)+x^2z^2(y^2...
= (y^2-z)(-x^3+xy-yz^2+x^2z^2)
= (y^2-z)[-x(x^2-y)+z^2(x^2-y)]
= (y^2-z)(x^2-y)(z^2-x) = b. a. c ko phụ thuộc vào biến
Cho x^2-y=a, y^2-z=b, z^2-x=c ( a,b,c là hằng số )
C/m biểu thức P=x^3(z-y^2) + y^3 (x-z^2) + z^3(y-x^2)+xyz(xyz-1) ko phụ thuộc vào các biến
m.n ơi giúp mk vs nha
Cho: P=x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
Hãy chứng minh rằng giá trị của P không phụ thuộc vào biến x,y,z.
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath