Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Văn Dũng
Xem chi tiết
Park Chanyeol
Xem chi tiết
Darth Vader
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2019 lúc 22:58

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

msi
Xem chi tiết
nguyễn bá lương
7 tháng 8 2018 lúc 9:03

đặt \(k=\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)

\(\Rightarrow\frac{a+c}{b+d}=k\)

mà \(k=\frac{a}{b}\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)(đpcm)

b) đặt \(k=\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)

\(\Rightarrow\frac{a-c}{b-d}=k\)

mà \(k=\frac{a}{b}\)

\(\Rightarrow\frac{a-c}{b-d}=\frac{c}{d}\)(đpcm)

Cún Dễ Thương
Xem chi tiết
Sherlockichi Kudoyle
27 tháng 7 2016 lúc 15:08

Đặt a +c vào 2bd ta có

(a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ad = cb

=> \(\frac{a}{b}=\frac{c}{d}\)

zZz Phan Cả Phát zZz
27 tháng 7 2016 lúc 16:06

Đặt a +c vào 2bd ta có

(a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ad = cb

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

LaYoLa
22 tháng 2 2018 lúc 19:52

Thay a+c=2b vào 2bd=c(b+d) ta đc :
(a+c)d=c(b+d)
ad+cd=bc+cd
ad=bc
nên a/b=c/d(đpcm)

ko ko
Xem chi tiết
Đặng Tuấn Anh
3 tháng 5 2018 lúc 17:59

Đặt \(\frac{a}{b}< \frac{c}{d}=k\Rightarrow a< bk;c=dk\Rightarrow a+c< bk+dk=\left(b+d\right)k\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{\left(b+d\right)k}{b+d}=k\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Luyện Ngọc Anh
22 tháng 10 2018 lúc 20:57

Ta có : \(\frac{a}{b}>\frac{a+c}{b+d}\)

<=> \(a\left(b+d\right)>b\left(a+c\right)\)

<=> \(ab+ad>bc+ba\)

<=> \(ad>bc\)[ Đoạn này ta thấy ba bên vế trái và vế phải giống nhau nên rút gọn bớt đi ]

<=> \(a>b\)

=> \(\frac{a}{b}>\frac{a+c}{b+d}\)

YangJiNguyen
Xem chi tiết
Nguyen Van Thanh
10 tháng 11 2016 lúc 22:19

em gửi bài qua fb của thầy nhé thầy HD giải cho, tìm fb của thầy qua sđt: 0975705122

Thanh Tùng DZ
7 tháng 1 2018 lúc 17:57

Ta có :

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\)( 1 )

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 3 )

TH2 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\)( 4 )

Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\)

TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2b}{2c}=\frac{b}{c}\)( 5 )

\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2a}{2d}=\frac{a}{d}\)( 6 )

Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\)hay \(\frac{a}{b}=\frac{d}{c}\)

Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)

Park Chanyeol
Xem chi tiết
Nguyễn Đăng Diện
Xem chi tiết
Trần Thùy Trang
30 tháng 1 2017 lúc 9:05

a + c  =2b ( 1 )

2bd = c(b+d) ( 2)

từ (1) và (2) ta được:

( a+ c ) .d = c.( b + d )

theo tính chất phân phối ta có"

ad + cd = cb + cd

=> ad = cb => a/b = c/d

k mknhes

Hoai Bao Tran
Xem chi tiết
No Ba
31 tháng 12 2016 lúc 20:37

Ai biết cách làm giải hộ đi///