\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\). hãy so sánh với 3
Cho biểu thức A = \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\). Hãy so sánh A với 3.
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2013}{2013}+\frac{1}{2013}+\frac{1}{2013}=\left(\frac{2013}{2014}+\frac{1}{2013}\right)+\left(\frac{2014}{2015}+\frac{1}{2013}\right)+1\)
Ta có: \(\frac{2013}{2014}+\frac{1}{2013}>\frac{2013}{2014}+\frac{1}{2014}=\frac{2014}{2014}=1\)
\(\frac{2014}{2015}+\frac{1}{2013}>\frac{2014}{2015}+\frac{1}{2015}=\frac{2015}{2015}=1\)
=> A > 1+ 1 + 1 = 3
cho \(a=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\)
so sánh a với 3
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}=3,00000074\)
Vì 3,00000074 > 3 nên A > 3
a) So sánh \(\frac{2013}{2015}\) và \(\frac{2014}{2016}\)
b) So sánh \(\frac{2013+2014}{2014+2015}\) và \(\frac{2013}{2014}+\frac{2014}{2015}\)
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
ta có tính chất \(\frac{a}{b}\)>1 suy ra \(\frac{a.m}{b.m}\).........
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
So sánh:
\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)và\(\frac{2013+2014+2015}{2014+2015+2016}\)
so sánh
\(\frac{2013}{2014}+\frac{2014}{2015}và\frac{2013+2014}{2014+2015}\)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015}\) (1)
\(\frac{2014}{2015}>\frac{2014}{2014+2015}\) (2)
ộng caác bất đẳng thứa (1) và (2) vào vế với vế:
\(\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\Rightarrow A>B\)
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
cho A =\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\).HAY SO SANH A VỚI 3
tôi giảng cho bn nè nếu có 3 ps và đều tối giản nhưng chỉ có 1ps là ko lớn hơn 1 còn 2 ps kia thì lớn hơn 1
=>3ps đó cộng vs nhau thì ko lớn hơn 3 vs dạng này
có \(\frac{2013}{2014}\)=1-\(\frac{1}{2014}\)
\(\frac{2014}{2015}\)=1-\(\frac{1}{2015}\)
\(\frac{2015}{2013}\)=1+\(\frac{2}{2013}\)
từ các ý trên suy ra A = 3 + \(\frac{2}{2013}\)-\(\frac{1}{2014}\)-\(\frac{1}{2015}\)=3+(\(\frac{1}{2013}\)-\(\frac{1}{2014}\))+(\(\frac{1}{2013}\)-\(\frac{1}{2015}\))
mặt khác \(\frac{1}{2013}\)>\(\frac{1}{2014}\);\(\frac{1}{2013}\)>\(\frac{1}{2015}\)suy ra A>3
Cho A = \(\frac{2000}{2001}+\frac{2001}{2002}+\frac{2002}{2003}+\frac{2003}{2004}+\frac{2005}{2006}+\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)
Hãy so sánh tổng các phân số trong A và so sánh với 15.
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
So sánh C= \(\frac{2013}{2014}+\frac{2014}{2015}\)
và D=\(\frac{2013+2014}{2014+2015}\)
D\(\frac{2013}{2014+2015}+\frac{2014}{2014+2015}\)
Vì \(\frac{2013}{2014}>\frac{2013}{204+2015}\)
và \(\frac{2014}{2015}>\frac{2014}{2014+2015}\)
nên C>D
Ủng hộ mk nha
\(\frac{2013}{2014}+\frac{2014}{2015}=1,999...\)
\(\frac{2013+2014}{2014+2015}=4029\)
nen D>C